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Abstract—The discrete Fourier transform (DFT) and its spe-
cialized case, the number theoretic transform (NTT), are two
important mathematical tools having applications in several areas
of science and engineering. However, despite their usefulness
and utility, their adoption continues to be a challenge as
computing the DFT of a signal can be a time-consuming and
expensive operation. To speed things up, fast Fourier transform
(FFT) algorithms, which are reduced-complexity formulations
for computing the DFT of a sequence, have been proposed and
implemented for traditional processors and their corresponding
instruction sets. With the rise of GPUs, NVIDIA introduced its
own FFT computation library called cuFFT, which leverages
the power of GPUs to compute the DFT. However, as this
paper demonstrates, there is a lot of room for improvement to
accelerate the FFT and NTT algorithms on modern GPUs by
utilizing specialized operations and architectural advancements.
In particular, we present four major types of optimizations that
leverage tensor cores and the warp-shuffle instruction. Through
extensive evaluations, we show that our approach consistently
outperforms existing GPU-based implementations with a speedup
of up to 4× for NTT and a speed of up to 1.5× for FFT.

Index Terms—DFT, FFT, NTT, GPU, Tensor Cores, cyphertext,
homomorphic encryption

I. INTRODUCTION

Fast Fourier transform (FFT), a reduced computational com-

plexity formulation of the discrete Fourier transform (DFT),

has been applied extensively to a wide range of applications

ranging from image filtering to differential equation solvers.

For example, Digital Signal Processors (DSP) with specialized

hardware support for efficient FFT computation have become

an essential part of the mobile System-on-Chip (SoC) to

support noise suppression, voice enhancement, etc [1].

Similarly, number theoretic transform (NTT), a specialized

DFT for integers, is vital in Fully Homomorphic Encryption

(FHE). FHE is applicable in a number of applications includ-

ing private search, confidential information retrieval and secure

biometric voting [2]. Indeed, FHE is a game-changer and

has started gaining more traction recently with governments

and industry [3]. However, most existing FHE-based proposals

lack widespread adoption due to significant performance and

overhead challenges. Given the diverse spectrum of applica-

tions for NTT and FFT algorithms, it is imperative to improve

the performance of these functions.

To this end, attempts have been made by both the computer

architecture [4] and the software engineering [5] communities

to speed up the execution times and reduce runtime overheads.

Similarly, the industry has developed its own solutions that

leverage the power of parallel computing platforms. For in-

stance, NVIDIA recently introduced the cuFFT library [6], a

specialized API to quickly leverage the floating-point power

and parallelism of NVIDIA GPUs. However, despite these

positive developments, more work is needed to speedup these

algorithms further (as evidenced by the slow adoption of FHE)

and facilitate widespread usage in everyday applications.

Hence, in this paper, we focus on optimizing both FFT

and NTT by utilizing the recently introduced GPU Tensor

Cores [7] and Warp-shuffle instruction. The main strength of

the Tensor Cores is their very high compute throughput and

operand supply bandwidth for modest-sized matrices. Further-

more, since real-world signal data are typically produced by

sensors that have limited precision, the low-precision nature

of the Tensor Cores can be sufficient for many real-world

applications. However, the cores cannot be utilized off-the-

shelf for DFT computation as some preprocessing is needed.

For instance, one of the major challenges is to transform

large-sized DFT operations into a collection of modest-sized

DFT operations that can be collectively performed as a small

number of modest-sized matrix multiplications on Tensor

Cores. Hence, one of the main contributions of this paper is

an iterative version of the Cooley-Tukey FFT algorithm for

systematically converting DFT operations of a wide range of

sizes into collections of modest-sized matrix multiplication

operations that fit well into Tensor Cores. Importantly, the

proposed conversion process preserves the reduced-complexity

nature FFT algorithms. Moreover, our implementation is aug-

mented by the clever use of the Warp-shuffle instruction to ex-

change data directly between threads without additional copy

overhead. In summary, this paper makes the following four

primary contributions in optimizing FFT and NTT algorithms

in a novel way for efficient execution on GPUs:

• An iterative version of the Cooley-Tukey FFT algorithm,
which smartly decomposes large DFT computations into

sequences of parallel, small baseline DFT computations
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that can fit well into Tensor Cores while preserving the

low complexity of the FFT algorithm. The proposed

decomposition, utilizes the Tensor Cores in an ideal way

and prevents both unnecessary spillover operations and

capacity wastage.

• Warp-shuffle-XOR (WSX) based FFT butterfly compu-
tation that allows the shuffle hardware to complement

the Tensor Cores for some of the DFT computation

generated by Cooley-Tukey that are too small to make

good use of the Tensor Cores. This also plays a key role

in accelerating NTT execution times.

• Using constant memory to store bit reversal and twiddle
factor lookup tables to drastically reduce the use of

registers and improve occupancy of the SMs (Streaming

Multiprocessors).

• Efficiently utilizing shared memory (on-chip scratchpad)
to completely remove global memory (DRAM) accesses,

which can be time-consuming and expensive, within

the inner core of the algorithm and alleviate memory

bandwidth bottleneck.

These key optimizations allow our approach to consistently

outperform existing-GPU based NTT implementations with

a speedup of up to 4× and cuFFT with a speed of up

to 1.5×. We also demonstrate the impact of more routine
optimizations such as using CUDA streams and asynchronous

data copies to overlap communication with computation. In

the following sections we first go over GPU architecture and

CUDA Programming Model and show critical Mathematical

formulations necessary for understanding the FFT and NTT

algorithms.

II. BACKGROUND

A. An Overview of GPUs

Over the past decade, GPUs have continued to evolve

from specialized devices for graphics rendering to accelerators

and compute engines for scientific applications and machine

learning workloads. For instance, to improve the efficiency of

machine learning computations, NVIDIA introduced Tensor

Cores in their Volta Architecture to perform very fast matrix

multiplication operations for low-precision data formats. In

their latest A100 GPUs, the peak single-precision floating-

point compute throughput is 19.5 TFLOPS without Tensor

Cores compared to 156 TFLOPS for GPUs with Tensor Cores

[8]. This is indeed a game changing boost in throughput .

Figure 1 shows the internals of the Streaming Multi-processor

(SM) of the latest Ampere GPU. Each SM consists of four

sub-cores which in turn contain two Tensor Cores (TC) each.

The intent of the Tensor Cores has been to accelerate Machine

and Deep Learning training and inference but they also hold

potential for a wider class of algorithmic applications, a theme

that is explored in our work. As our contributions involve

low-level optimizations, it is imperative to first understand the

execution and memory models of CUDA, Tensor Cores and the

Warp-shuffle instruction. Hence we present a brief overview

below:

Fig. 1. NVIDIA Ampere architecture Streaming Multiprocessor (SM) and
the internals of a sub-core showing Tensor Cores (TC) .

1) CUDA Execution Model: Compute Unified Device Ar-
chitecture (CUDA) is a parallel programming platform that

enables NVIDIA GPUs to execute programs written in C,

C++, etc. Although the methods described in this paper are

not limited to CUDA, all implementation examples are in

CUDA and experiments are conducted in a system with CUDA

hardware and software. Here, we will highlight a few CUDA

terms that will be important for understanding the rest of the

paper.

A CUDA program is divided into a host and device part

where the host functions typically run on the CPU and

the device functions run on the GPU. The NVCC compiler

provided by NVIDIA separates both parts during compilation.

There are three types of function declarations, i.e, host, global

and device. The global function can be called from the host

or the device but runs on the device while the host and

device functions are only callable from the host and device

respectively (as implied by the name). The global function

execution initiation is also known as a CUDA Kernel launch.

There is a hierarchy of threads associated with the global

function when it is launched on the device. The outermost

thread is called a grid which contains one or more blocks

which in turn contain threads. A grid is mapped on the whole

of the GPU while the block is mapped on a single Streaming

Multiprocessor (SM). Threads in a block can access data in

a Shared Memory whose contents are local to the block. The

SM executes threads in groups of 32 called warps, similar

to a Single Instruction Multiple Data (SIMD) execution. In

the pre-Volta architectures, every warp would have a single

program counter (PC) and call stack (S). Starting with the

Volta generation, there is an individual PC and S per thread

in order to allow equal concurrency between all threads,

regardless of warp. The GPU can launch one or more of these

CUDA Kernels asynchronously [9].

2) CUDA Memory Model: The CUDA Memory hierarchy
is also a fundamental part of the system. It contains three

levels or layers, i.e, Global, Constant and Texture memories,
which can be seen by all threads of the grid. The Global

memory is the slowest as it is farthest away from the execution

engines/cores among the three. The Constant memory is the

fastest among the three as it is a read-only memory which

is heavily cached close to the execution engines/cores. The

Texture memory is also a read-only memory whose memory
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traffic is routed through the texture cache, which is optimized

for 2D spatial locality. When a thread block is executed on an

SM, the SM assigns an on-chip Shared Memory to the thread

block, which is private to the thread block and shared among

all threads of the block. Finally, every thread has access to its

own pool of private registers, which are closest to the ALUs

and clearly the fastest.

3) Tensor Cores: The CUDA Tensor Cores were intro-

duced starting with the Volta architecture. Each Streaming

Multiprocessor has four sub-cores wherein each sub-core has

two Tensor Cores. The primary operation that the Tensor

Cores perform is matrix “multiply and accumulate” i.e., (D =
A ·B + C). These Tensor Cores have evolved over the years
and can now support multiple low precision and short types

including Floating Point (FP) 16 (half-precision) and char as

input. The Warp Matrix Multiply Accumulate (WMMA) API
allows access to Tensor Core programming. Programmers use

API functions to load, compute, and store fragments. The

following three functions are key to processing matrices on

the Tensor Cores.

• load matrix sync : loads from either global or shared
memory to Tensor Core fragments

• store matrix sync : stores from tensor core frag-

ments to either global or shared memory

• mma sync : performs the matrix multiply and accu-
mulate operation

All three functions call the syncwarp() function which

waits until all warp lanes (threads of a warp) have synchro-

nized and then the whole warp performs the operation. The

Tensor Cores support varying matrix tiles including 16x16x16,

which serves as a baseline for our DFT computation.

4) Warp Shuffle (SHFL) Instruction: In the Kepler series
of GPUs, Warp Shuffle instructions were introduced which

enabled a thread to directly read a register from another thread

in the same warp. This newly introduced feature, allowed

communication between threads without the need to utilize the

relatively slower shared memory. A number of Warp Shuffle

instructions were introduced which included shfl, shfl down,
shfl up and shfl xor. In this paper we would be extensively
using the shfl xor instruction, which takes three arguments i.e.,
participating threads, data to exchange and the lane mask. The

XOR operation is applied between caller lane id and the lane

mask to determine the lane from which to copy the value.

B. Fourier Transform

Now that the reader is familiar with some of the internals of

CUDA relevant to our work, we move to Fourier Transforms,

which will complete the background knowledge needed to

appreciate the contributions made by this work. The Fourier

transform [10] of the function f(x) is the function

F (ω) =

∫ ∞

−∞
f(x)e−iωx dx (1)

where i =
√−1 and eiθ = cos θ + i sin θ which is known

as the Euler’s Identity.

The integration of f(x) in the Fourier Transform is often

represented as F(f(x)) where F is referred to as the Fourier

transform operator. In Signal Processing, f(x) is the input
signal and F (ω) is known as its corresponding frequency
spectrum. When the signal is discrete and periodic we use the
Discrete Fourier Transform (DFT) instead, which is defined

by the formula

Xk =
N−1∑
n=0

xnW
nk
N (2)

where

WN = e−i 2π
N (3)

The input signal is xn for n = 0 . . . (N − 1) and W k
N for

k = 0 . . . (N−1) is known as the Nth roots of unity or twiddle
factor. It takes its name from the fact that (W k

N )N = 1 for all
k if we take complex arithmetic into account. There are two
properties associated with the twiddle factor, i.e, periodicity
and symmetry. The periodicity property states that Wα+N

N =
Wα

N while the symmetry property means that values that are

180 degrees out of phase are negatives of each other. The

output Xk is the Discrete Fourier Transform of the input signal

xn. This is a list of N complex numbers. This operation can

also be represented in terms of matrices and the DFT algorithm

is just a dense matrix vector multiplication as shown below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X0
X1
X2

.

.

.

XN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

W0 W0 W0 . . . W0

W0 W1 W2 . . . WN−1

W0 W2 W4 . . . W2(N−1)

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

W0 WN−1 W2(N−2) . . . W (N−1)(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x0
x1
x2

.

.

.

xN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The time complexity of the matrix-vector multiplication

formulation of DFT is O(N2). FFT is just a lower-complexity
formulation of the DFT algorithm. FFT is a divide-and-

conquer algorithm, which is able to perform this matrix

vector multiplication in O(N log2 N ) steps. Furthermore, it
is also possible to compute the inverse Fourier Transform

with the same computational complexity. There are multiple

representations of the FFT operation. One is via the butterfly

algorithm, which we will go over in later sections and another

via factorizing the dense Fourier Matrix into a bunch of sparse

matrices. In our implementations, we use the Cooley-Tuckey
Recursive Algorithm, which we will discuss in the section
below.

Fig. 2. Cooley–Tukey Recursive Algorithm Steps.

347

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:21:25 UTC from IEEE Xplore.  Restrictions apply. 



C. Cooley–Tukey Recursive Algorithm

The Cooley–Tukey Recursive Algorithm [11] can be

mapped in terms of matrix multiplication and has the ability

to utilize the dense matrix multiplication acceleration provided

by the Tensor Cores. We will first state the mathematical

formulation of the algorithm. The algorithm begins by treating

the input length N as a composite N = N1 · N2. Now,

if we apply this to the original DFT equation via index

mapping [12].

Xk =
N−1∑
n=0

xnW
nk
N (4)

changes to:

Xk1+N1k2
=

N2−1∑
n2=0

N1−1∑
n1=0

xn1N2+n2
W

(n1N2+n2)(k1+N1k2)
N

where,

n = n1N2 + n2

k = k1 +N1k2

for n1, k1 = 0, 1, . . . (N1−1) and n2, k2 = 0, 1, . . . (N2−1)

Now,if we simplify the exponentials we get:

W
(n1N2+n2)(k1+N1k2)
N

= (Wn1N2k1

N )(Wn1N2N1k2

N )(Wn2k1

N )(Wn2N1k2

N )

= Wn1k1

N1
· 1 ·Wn2k1

N Wn2k2

N2

Since WN1

N = WN2
, WN2

N = WN1
and WN

N = 1, plugging
it back and rearranging would give:

Xk1+N1k2
=

N2−1∑
n2=0

(Wn2k1

N (

N1−1∑
n1=0

xn1N2+n2
Wn1k1

N1
))Wn2k2

N2

The obtained resultant Equation provides a very interesting

way of computing a one dimensional DFT by expressing it as

a two dimensional matrix. First, the input vector is read row-

wise into a N1 ×N2 matrix. This can simply be a row-major

layout interpretation of the original vector into a 2D matrix.

Then, N1 length DFTs are computed over all N2 columns.

In the subsequent step, the result is multiplied element-wise

with the twiddle factors. After the element-wise multiplication

operation, N2 length FFTs are computed over all N1 rows.

Finally, the resultant matrix is written out column-wise, i.e.,

transposed, to get the final vector. Figure 2 shows a graphical

depiction of the steps involved. This is a recursive process

as when computing the column-wise FFTs we can continue

with the first step and decompose it further. A base-case size

would be required to end the recursion and to apply the DFT

operation directly.

D. Number Theoretic Transform

The Number Theoretic Transform (NTT) [13] is a form

of DFT specialized for the finite field of integers. The main

difference between NTT and DFT is their twiddle factors: DFT

uses the powers of N th root of unity in Equation 3, whereas
NTT uses Ψ ∈ Z

n
p , the powers of the N th root of unity modulo

a prime number such that ΨN ≡ 1 (mod p) for a given input
size N and a prime number p where p = kN+1. The forward
NTT transform is defined as:

Ak =
N−1∑
n=0

anΨ
nk
N (mod p) (5)

Algorithm 1: Cooley-Tukey NTT
Input: A vector a = (a[0], a[1], ..., a[N − 1]) ∈ Z

n
p

where p is a prime such that p ≡ 1 mod 2N .
A precomputed twiddle factor table

Ψ = (Ψ[0],Ψ[1], ...,Ψ[N − 1]).
Output: a←− NTT (a) is in bit-reversed order.

1 t = N/2
2 for (m = 1;m < N ;m = 2m) do
3 for (i = 0; i < m; i = i+ 1) do
4 for (j = 2i · t; j < 2i · t+ t; j = j + 1) do
5 X = a[j]
6 Y = a[j + t] ·Ψ[m+ i]
7 a[j] = X + Y mod p
8 a[j + t] = X − Y mod p
9 t = t/2;

The Cooley-Tukey algorithm [13] can be used to implement

a similarly fast version of NTT, as shown in other works [14],

[15].

Algorithm 1 shows a radix-2 based implementation of the

Cooley-Tukey based NTT, which is adapted from [16]. An

input vector of size N is recursively divided into 2 interleaved

N/2-point NTTs at each stage, with a total of log2 N iterations

or stages. The twiddle factors Ψ, which are used at each stage
are stored in a pre-computed table for efficiency. The output

vector produced is in bit-reversed order so the input needs bit

reversing to reorder the output. A variant of this is based on

the Stockham Algorithm [17] and does not require bit reversal

at the output but for simplicity, we will only be considering

the Cooley-Tukey based NTT.

Given the value of quickly computing NTTs, a number of

prior works have focused on accelerating NTT on GPUs [14],

[18]. However, these studies do not take advantage of Tensor

Cores or warp-shuffle instructions, which is one of the main

contributions of our work.

III. DESIGN AND METHODOLOGY

A. Tensor Core based DFT Matrix

Our approach is based on the Cooley-Tukey recursive algo-

rithm mentioned earlier. One of the underlying ideas of our

work is an efficient representation of a complex data type. As
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the Tensor Core inputs cannot be the CUDA standard complex

type or a vectorized type like half2, we define two half
matrices, one for the real part and the other for the imaginary.

For example, a 4-point DFT Fourier Matrix is represented as

follows:

⎡
⎢⎣
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎤
⎥⎦→

⎡
⎢⎣
1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0

⎤
⎥⎦ and

⎡
⎢⎣
0 0 0 0
0 −1 0 1
0 0 0 0
0 1 0 −1

⎤
⎥⎦

The real matrix contains the real part of the coefficients while

the imaginary matrix contains the imaginary part. The first step

of our algorithm is to have a base case because no matter how

many times we decompose the vector recursively, it will come

to a point where multiplication by the DFT Fourier matrix is

necessary.

As one of the available Tensor Core tile sizes is 16× 16, it
would be ideal to have a 16-point DFT as a base case. Using

the Tensor Cores we strive to process batches of 16 DFTs, each

of which is a base-case 16-point DFT. Algorithm 2 shows the

complex matrix multiplication steps required to do a 16-point

DFT using the Tensor Cores.

Algorithm 2: Tensor Core based 16 batch 16-point
DFT (unitDFT)

1: Freal ← Real Part of the Fourier Matrix
2: Fimg ← Imaginary Part of the Fourier Matrix
3: Xreal ← Real Part of the Input Vector
4: Ximg ← Imaginary Part of the Input Vector
5: Nimg ← −Fimg

6: C ← 0
7: T1 ← Freal ·Xreal + C
8: T2 ← Fimg ·Xreal + C
9: Yreal ← Nimg ·Ximg + T1

10: Yimg ← Freal ·Ximg + T2

B. Warp-shuffle-XOR (WSX) NTT and FFT butterfly computa-
tion

One of the key contributions of this paper is to efficiently

implement NTT and FFT using the warp shuffle instruction.

This is based on the O(N log2 N ) based butterfly repre-
sentation. The Warp-shuffle-XOR (WSX) based NTT/FFT

computation has two parts, i.e., the bit reversal step and the

butterfly exchange step. In the first step, each thread loads an

input value based on a bit reversal table. The offset of the bit

reversal table entry accessed by each thread is (thread id %

NUM) where NUM is the size of the NTT/FFT. The following

is the bit reversal table in a 4-point NTT/FFT:

Note that the first and the last index yields out 0, which

means there will not be a swap of values as bits “00” and

“11” remain the same when reversed. The second index yields

out 1 while the third one yields out -1, which indicates that a

swap between the values of these two threads as the bits “10”

become “10” and vice versa. One of the key optimizations

applied is pre-generating this bit reversal table and storing it

Index offset
0 0
1 1
2 -1
3 0

TABLE I
BIT REVERSAL TABLE FOR 4-POINT FFT

in constant memory instead of creating it in each thread. As

constant memory is read-only and gets heavily cached, this

provides a good reduction of the overall execution time.

Fig. 3. WSX based 4 point FFT/NTT algorithm.

The second step involves the butterfly exchange. Listing

1 shows the FFT, and Listing 2 shows the NTT CUDA

implementation while Figure 3 shows the 4-point computation

flow. Note that some of the arrows in Figure 3 show the

twiddle factors that need to be multiplied to the data in that

lane.

The key part of this implementation is the use of shuffle

function. The warp shuffle function enables a thread to directly

read a register from another thread in the same warp. The

threads in the warp can either collectively exchange or broad-

cast data. This is a lot faster than using shared memory, which

requires a load, a store and an extra register to hold the address.

The shlf xor sync takes three arguments, i.e., mask, value
and and an ID. In our case, the mask is 0xffffffff, which
indicates that all 32 threads in the warp would take part in

the exchange. The value is the data that is being exchanged

while the (ID XOR lane id) determines which warp lane to

send the data to. Similar to the bit reversal table, we created

a twiddle factor table (TF table) in the constant memory as

these twiddle factors remain same throughout all warps in the

grid. The twiddle factor values for NTT and FFT are computed

differently. Moreover, control divergence is avoided through
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the use of logical operators and divisions to eliminate any

branches that restricted control flow based on the lane id. In

case of FFT, the function cmul is used for computing half
precision complex element multiplication while smul does a
scalar multiplication.

C. Fully Optimized Algorithm

In this section, we present our overall algorithmic approach

as depicted by the concept diagram in Figure 4 and Algorithm

3. Our optimized algorithm is divided into the following 7

stages.

1) To start off, data movement and pre-computations take

place. Input Data is moved from the host memory to

device memory while the constant memory is populated

with the read-only bit reversal and the twiddle factor

tables. The base Fourier matrices are also generated,

which can fit into the Tensor Core tile size.

2) The main CUDA kernel is launched, which computes the

column-wise DFT operation using the Tensor Cores by

effectively utilizing shared memory for faster accesses.

For smaller sizes the WSX algorithm is directly used.
3) Now, a per thread element-wise complex number multi-

plication is done with the resultant output and the twid-

dle factors. This can also be thought of as a Hadamard

product.

4) We now move towards a row-based FFT computation. A

decision is made whether to use the Tensor Cores or the

WSX algorithm. An appropriate element-wise twiddle

factor computation is done where required.

Algorithm 3: Optimized FFT Algorithm
Input: A complex vector

x = (x[0], x[1], ..., x[N − 1]) ∈ C

Pre-computed bit reversal and twiddle factor table

Xm←− batches of input x grouped in m×m sub-matrix

T ←− Twiddle Factors, B ←− Number of Batches
N ←− Single Batch Length
Ψm ←− m point DFT matrix where m ≤ Tensor Core
tile size

Output: y ←− FFT (x)
1 for (i = 0; i < �Bm�; i++) do
2 Y = T [i]	 (Ψm ·Xm[i]])
3 N = N

m
4 < synchronize >
5 if N < m then
6 WSX(Y [i], N)
7 else if N == m then
8 goto line 2

9 else
10 WSX(Y [i], N

m )
11 goto line 2

12 blockTranspose(Y [i])

5) The decision is executed.

6) We now do a matrix transpose to dump the final output

back to global memory. This can be achieved via the

Tensor Cores or a per thread approach.

7) Last, we move towards the next group of batches and

continue doing so until all are exhausted.

IV. EXPERIMENTAL RESULTS

In our experiments, we have used NVIDIA’s Ampere A100

GPU for comparisons. Due to a lack of any official GPU-

based standard implementation for NTT, we implemented a

baseline to compare against our WSX-based NTT. It would

follow a standard block synchronous approach where threads

of a block would collaborate and work on a chunk of input

vector concurrently. In the interest of fairness, the number of

threads used in our experiments were kept the same for both

the implementations (baseline and WSX-based NTT) and the

type used was integer.

Figure 5 shows the first set of results. The goal here is to

test the baseline NTT implementation against our WSX-based

approach. As evident, our WSX-based NTT has delivered a

substantial speedup of up to 4×, especially in case of larger
input sizes where the gap between the performance of the two

systems is clearly observable.

The y axis shows the execution time in milliseconds. CUDA

events were used to measure the kernel execution time and

the copying time between host and device was excluded.

We also used the latest NVIDIA profiler i.e., nsight-compute
to instrument the achieved compute and memory throughput

values as a percentage of theoretical maximum. For the same

experiment, Figure 6 shows the corresponding GPU utilization
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Fig. 4. Concept Diagram for our optimized algorithmic approach

Fig. 5. NTT Execution Time Graphs.

study for NTT. Our WSX approach is clearly utilizing better

compute and memory resources and we would achieve up

to 6× higher compute and memory throughput in case of

the larger 16 radix NTT. It is interesting to note that with

increase in input vector length and radix value, the compute

throughput trace overtakes the memory throughput trace. We

can also safely deduce that our implementation is both memory

and compute-bound and would definitely scale well with the

increase in the number of Streaming Multiprocessors.

We now move to the second batch of results that focus on

FFT. For our FFT benchmarking, we used Fp16 supported

cufftXt library for comparisons. The cufftXt library has doc-

umented limitations i.e does not support more than 4 billion

elements and is restricted to powers of two. Figure 7 shows

our fully optimized FFT execution time results against cuFFT.

On the x-axis, we have the number of input batches while

on the y-axis, we have the execution time in milliseconds.

Logarithmic scaling is used on the y-axis to correctly fit all

the values in the graph and to improve readability. Note that

due to the number of element restriction of cufftXt the number

of batches decrease with increase in length of a single batch.

In all of our cuFFT experiments, we did not take the time

for the first run into account, which included cuFFT’s plan

creation and specialization overhead. Although it was one time

operation, it is still quite expensive taking around 100ms to

complete. In the end, we used the cufftDestroy function to
remove the plan buffers from GPU memory. Similarly, we did

not include the time for pre-computing some of our structures

i.e., bit Reversal table and twiddle Factor table. The time for

this was negligible at less than 1ms.

We clearly boast decent speedup compared to cuFFT. In

smaller batch sizes we get about 1.5× speedup while going

neck to neck and converging in extreme cases where the

library support is exhausted. This is a notable win as cuFFT,

which follows FFTW, specializes its algorithm based on the

underlying hardware. Furthermore, our implementation did not

compromise on precision and it co-related well with cuFFT’s

results. We again used NVIDIA’s nsight-compute profiler to
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Fig. 6. NTT GPU Utilization Graphs.

Fig. 7. FFT Execution Time Graphs.

Fig. 8. FFT GPU Utilization Graphs.

get the achieved compute and memory throughput values. Like

before, Figure 8 shows the detailed GPU utilization Graphs

for FFT results. Here also, it is evident that our optimized

algorithm has about 2× higher compute throughput which is

due to the utilization of Tensor Cores. In case of memory

throughput utilization, we are almost neck to neck with cuFFT

implementation and even overtake cuFFT in several instances.

One of the key insights that can be drawn from these results is

that the cuFFT implementation is indeed memory-bound while

our optimized approach is both memory and compute-bound.

This means that if the number of Tensor Cores continue to

increase with newer GPU releases (which is the current trend),

our implementation would surely improve in performance

further.

V. USING CUDA STREAMS

A stream is a sequence of operations that execute in issue-

order on the device (GPU). CUDA allows us to initiate

multiple streams and run operations concurrently. While op-

erations within a stream are guaranteed to execute in the

prescribed order, operations across different streams can be

interleaved and or executed concurrently. To take advantage

of multiple streams both the GPU kernel execution and the
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memory copy must be done asynchronously. GPU kernels are

asynchronous by default so they can easily fit in. For memory

copy, cudaMemcpyAsync is used which has the ability to return
the call to the host even before the copying is complete. For

this to work the host memory needs to be allocated using

cudaMallocHost, which is page locked and accessible to the
device.

Fig. 9. FFT Complete Execution Time with multiple streams.

Listing 3 shows an example of using CUDA streams. Note

that the input array is divided into chunks and launched

on different streams. The streams are also bidirectional i.e.,

while one is copying from host to device another would

be copying from device to host. CUDA streams allow for

an overlap between communication and computation, which

greatly boosts overall execution time. The graphs in Figure 9

show the impact of CUDA streams on 16-point and 256-

point Fourier transforms. Note that on the y-axis, we have

the complete time which includes the copying as well as the

execution time. There is a clear speedup when using streams

for higher batch sizes although using twice as many streams

does not mean twice as big of a speedup, as seen when using 8

streams instead of 4. In case of low batch sizes, we see that in

fact cuFFT is faster. This is due to the overhead associated with

creating both, multiple CUDA Streams and launching multiple

kernels. This implies that the number of streams launched

should depend on the number of input elements and hence,

a varied approach should be adopted based on the nature of

the batch sizes.

VI. RELATED WORK

Many of the earlier works on GPUs used graphics APIs

to compute the FFT. This is generally done to improve

the performance of matrix multiplication done during FFT

computation [19]. [12] demonstrates how to do this for image

processing applications on early GPU hardware and [20]

compares the use of FFT and convolution techniques on GPU

to perform image filtering.

[21] used OpenGL-based Vertex and Fragment shaders

while [22] developed a DirectX based implementation. Simi-

larly, [23] uses the modern CUDA API to implement mixed-

radix FFT algorithms while exploiting shared memory. GPU

clusters have also been used to optimize large-scale FFT

calculations [24].The 3D-FFT, a variation for 3D images, is a

very data and compute intensive kernel that also has CUDA-

based implementations in [25] and [26]. All these works are

commendable and have contributed towards advancing the

field. They serve as an inspiration to our own work.

More specifically, attempts have also been made in the past

to accelerate NTT on GPUs [27], like our work, however, we

introduce a novel way to utilize Tensor Cores and warp-shuffle

instruction to optimize performance. Our comparisons with the

state of the art cuFFT library depicts the viability and impact

of our approach.

In general, Tensor Cores have been used in the past in

a variety of applications beyond Deep Learning workloads.

They have been used for generating weather forecast models

by accelerating the calculation of Legendre transforms [28].

Similarly, authors in [29] aim to accelerate arithmetic reduc-

tion using a chained matrix multiply add (MMA) approach by

using Tensor Cores. Reduction and scan have been formulated

in terms of matrix multiplication and mapped on the tensor

cores utilizing high performance in [30]. Iterative Refinement

solvers have also been mapped on the Tensor cores with

improved accuracy [31]. Finally, Tensor cores have also been

utilized to generate Image Processing code by extending the

Halide domain specific language (DSL) [32].

Tensor-Core based complex matrix multiplication has been

studied in [33] and demonstrates a notable speed up for a

variety of cases. The warp-shuffle instruction has also been

used earlier for implementing FFT in [34]. Independently [33],

[34] provide an important base for this paper. There has been

an attempt to optimize the FFT using Mixed Precision on

Tensor Cores [35], sacrificing precision for speed. Even though

the work is promising, the reported performance of the system

has room for improvement due to the inherent trade-off of

their approach. [36] is a notable work that expands our idea

of using tensor cores for FFT and presents a comprehensive

mixed-precision FFT algorithm that offers performance im-

provements over cuFFT.

Lastly, this work builds on our parallel [37], [38] which

discuss a similar methodology of using tensor cores and warp

shuffle to outperform cuFFT on Volta GPUs.

VII. LIMITATIONS AND FUTURE WORK

Currently, NVIDIA Tensor Cores do not support full 32-bit

integer as input. In the future, with the support for integers

and long types, we could further optimize our approach of

using Tensor Cores to compute NTT. Moreover, it could also

be interesting to see how our approach scales with multiple

GPUs.

In terms of the limitations, our work does not take into

account input with prime number lengths. Although, zero

padding approximation can be applied to compliment our

proposed approach, it is currently unclear how specialized

prime FFT computation algorithms, like Rader’s [39] and

Bluestein’s [40] algorithms can be mapped onto the Tensor

Cores. This is an area we plan to explore in future work.
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VIII. CONCLUSION

Graphics Processing Units (GPUs) are evolving at a rapid

pace and vendors are coming under increasing pressure to

incorporate additional domain-specific architectural features.

For example, we might soon see an accelerator for computing

the Hadamard product or sparse matrices, which would boost

performance for certain types of computations. However, these

specialized features and accelerators, though intended for

targeted workloads and narrowly-defined operations, can be

carefully studied and applied to other unintended domains

as well. For instance, Tensor Cores, which were specifically

developed to accelerate Machine Learning and Deep Learning

workloads can be leveraged in novel ways to get additional

performance benefits in other engineering and scientific do-

mains, as shown in this work. In particular, by utilizing recent

advancements in GPU architectures and instruction sets, such

as Tensor Core and WSX-based operations, we have improved

the execution times of FFT and NTT algorithm, outperforming

the existing standards. Our results underscore the need to

explore additional avenues of utilizing various macro and

micro-architectural features and properties, thereby expanding

the benefits for the broader community.
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