
An Efficient GPU Implementation Technique for
Higher-Order 3D Stencils

Omer Anjum, Garcia de Gonzalo Simon, Mert Hidayetoglu, Wen-Mei Hwu
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, USA

Email: oanjum@illinois.edu, grcdgnz2@illinois.edu, hidayet2@illinois.edu, w-hwu@illinois.edu

Abstract—Stencils are a family of widely used computational
patterns that play a critical role in various scientific and engineer-
ing applications. Stencil computations are known to be memory-
bandwidth bound, thus a number of different techniques and
algorithms that optimizes memory bandwidth usage have been
proposed. However, existing techniques fall short in addressing
the needs of large stencils, particularly more advanced stencil
patterns involving non-axis aligned grid points. To handle non-
axis aligned grid points, existing methods either use 3D caching
or 2D caching schemes with more than one pass over the stencil
per iteration, which suffers from the high intensity of memory
accesses. The large number of memory accesses in these methods
hinder the available performance. In this work, we present a new
GPU-based implementation technique called “SWiC” that focuses
on using 2D caching to efficiently implement advanced 3D stencil
patterns, involving non-axis aligned grid points, and reducing
global memory transactions by increased data reuse while only
requiring a single pass per iteration. In contrast to the current
approaches that maintain input register queues, the proposed ap-
proach maintains and updates the output register queue instead.
The analysis shows that SWiC achieves a significant reduction in
memory transactions which translates to a significant application
speedup, 1.6x to 5.76x, when compared to the current state-of-the-
art GPU stencil implementation. “SWiC” was evaluated across
the latest three Nvidia GPU architectures as of the writing of
this paper, as well as various stencil patterns and sizes. We also
show that “SWiC” does not suffer from performance penalties
when applied to simpler 3D stencils without non-axis aligned grid
points, covering a wide application range. When running on a
multi-node setting, we study the scaling efficiency of SWiC and
show that it is able to achieve a weak scaling efficiency of about
96%.

I. INTRODUCTION

Stencil computation is widely used in high performance
computing simulations to solve partial differential equations
at large-scale that characterize and predict physical quantities
such as heat, sound, velocity, pressure, density, elasticity, mag-
netohydrodynamics, electromagnetism, and electrodynamics.
Applications that perform such characterization and prediction
include earth weather prediction, space weather prediction,
acoustics, star (e.g. the Sun) simulations, geomagnetic field
simulations, etc.

In order to update a point in a grid space, “stencil”
determines neighboring grid points in 2D or 3D in the same
grid space to be used for the update. As an example consider
Fig, 2(a), where the point at the center of the cube uses
all the first-order neighbouring points in the cube to update
itself. The same stencil sweeps over the whole grid to make
updates at every point in the grid. Depending on the application

(a) (b)

Fig. 1. An overview of the approach with an order-1 stencil. In actual
implementation stencil has mirror image around the front side coming out of
the page (a) With input register queue 3D caching is required to update the
point at the center since the blue diagonal points other than those in the center
plane are not visible to thread updating point at the center (b) Square and circle
indicate an update from axis aligned or diagonal grid point, respectively. The
color of the square and circle corresponds to the color of the grid point.
With output register queue, acting as accumulator, 2D caching is sufficient.
As thread progresses through different planes, partial sums are added to the
accumulator contents until thread has accessed all the required grid points.

requirement, stencils of different order in two dimensions (2D)
and three dimensions (3D) are used. The order of a stencil
specifies the number of neighboring grid points required for
updating each grid point. For some applications, a lower-
order finite-difference method (FDM) [1] with small stencil
size (requiring one or two axis aligned neighbors) as shown
in Fig. 2(b) might suffice. However, in order to accurately
simulate more challenging systems such as the dynamics of
turbulent fluids, higher-order stencils with a larger number
of both axis and non-axis aligned grid points, i.e., points
along diagonals in each plane, are often required, as shown
in Fig. 2(a). The red points are the non-axis grid points along
diagonals. Such a stencil has also been used to develop the
Himeno Benchmark [22]. Stencil kernel optimizations for GPU
has been widely studied. A range of different tiling techniques
through automatic code generation, compiler optimizations,
and manual-tuning, in spatial domain [18], [19], [20], [6],
[21], [22], [23], [7], [8] and time domain [24], [25], [26],
[27], [28], [29] have been proposed, to increase data reuse and
decrease memory bandwidth consumption. For spatial tiling,
3D stencils are particularly challenging due to their very large
tile sizes that require a large amount of on-chip shared memory
to be effective. To overcome this difficulty, prior work resort
to 2D caching while streaming or stepping through the third
dimension[18]. However, as in shown in Fig. 1(a) for 3D
stencils with off-axis grid points in blue color, not in the same
plane as the grid point to be updated, are not visible to a
thread. In order to make those visible prior approaches need
to fallback to 3D caching in shared memory. Unfortunately,
3D caching increases shared memory usage and results in poor
GPU occupancy, especially for high-order stencils [19], [21],
[23], [6]. To increase GPU occupancy, a multi-pass approach

552

2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems

978-1-7281-2058-4/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCC/SmartCity/DSS.2019.00086

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

with 2D caching has been proposed [6], which suffers with
higher number of global memory transactions. In this paper
we take a different approach from previous work by improving
data reuse further in the spatial domain without requiring
multiple passes per stencil iteration or 3D caching in shared
memory. Instead of using input register queues, we maintain
output register queues for partial updates. A 2D plane is read in
to the shared memory and updates are made for the past and the
future planes. Colored square and circle in Fig. 1(b) indicates
contribution from axis and non-axis aligned grid points of the
same color, respectively. Partial sum approaches to maturity as
thread progresses to other planes until it has accessed all the
required points. Our proposed approach is motivated by non-
axis aligned stencil computations. However, it can be applied
to 2D or 3D stencil patterns with or without non-axis aligned
grid points. Optimizations that apply tiling in time domain
[24], [25], [26], [27], [28], [29] are orthogonal to our proposed
approach, and outside the scope of our discussion.

We call our approach as “Scatter Without Write Conflict”
(SWiC), where a thread scatters the effect of an input grid
point read from 2D tile in the shared memory to all the
accumulators in its private output register queue. When a result
in the output register queue is ready, it is sent to the global
memory, releasing an accumulator for a new grid point as the
thread moves to the next plane. The reuse of accumulators
helps to mitigate the register pressure by bounding the size of
the output register queue to (2× stencil-order + 1). Since the
accumulators are stored in the private registers of each thread,
SWiC completely avoids the update conflicts of general scatter
approach [7], [8]. None of the prior work considers scatter
and output register queue for stencil computation. This paper
makes the following contributions:

• We propose an efficient GPU algorithm for computing
stencils with arbitrary patterns involving axis- or non-
axis grid points without the need for 3D caching or
multiple passes per stencil iteration.

• The proposed approach increases the data reuse and
decreases the memory bandwidth consumption, result-
ing in significant application speedup.

• The run time scales more efficiently than previous
approaches as the problem size increases

• We show that our proposed approach is effective on
the latest generations of GPU architectures

• Our proposed approach requires fewer quantities to
communicate during halo exchange when used in a
multiple-node execution environment, compared to the
multi-pass approach with 2D caching.

The rest of the paper is organized as follows: Section II
briefly explains the constraints in GPU architectures. Section
III focuses on the related work. Section IV explains the
implementation details of our solution. Section V presents the
results and discussion. Finally, Section VI presents our future
work and conclusions.

II. GPU IMPLEMENTATION CONSTRAINTS

A. Memory Bandwidth

Stencil applications are generally known to be bandwidth
bound whereas memory bandwidth has not been increasing at
the rate of increase in FLOPS from one hardware generation to
the next [14], [15]. This presents a major challenge for those
who seek an efficient implementation of higher-order stencils
as highlighted in several other prior works in Section III. In
general, any approach to reducing the effect of memory band-
width limitation must exploit data locality/reuse. In GPUs, data
reuse is mainly achieved through registers and shared memory
usage. Unfortunately, an increased amount of shared memory
used by each thread can significantly reduce the occupancy, or
the number of threads that can be scheduled for simultaneous
execution, potentially lowering sustained performance.

B. Arithmetic Intensity

Arithmetic intensity for an application is measured as the
number of arithmetic operations performed for each operand it
fetches. As an example, let us consider a basic Navier-Stokes
equation [5], which is widely used in the fluid dynamics, with
four physical quantities, a 3D velocity vector and a density
scalar, at each grid point. To update a single grid point in a
55-point non-axis aligned stencil, as in Fig. 2(a), one needs
to fetch (number of grid points in the stencil)×(number of
physical quantities) = 220 operands in order to perform a
total of 291 operations, leading to an arithmetic intensity of
291/220 = 1.32. The estimated number of operations is con-
firmed from actual profile data collected by the Nvidia Visual
Profiler [34]. The maximal reuse factor for a 55-point stencil is
55, i.e., the number of grid points in the stencil. This is because
each grid point is updated using 55 neighbouring grid points
including itself, as shown in Fig. 2(a). In the ideal case, if we
are able to achieve this maximal reuse factor, it would result
in an arithmetic intensity of 1.32 × 55 = 72.75. However, as
one partition the grid points for processing by CUDA thread
blocks, neighbor thread blocks share some amount of grid
point data with each other as “halos/ghost zones”, as shown
in Fig. 3. Such shared grid points are requested independently
by the adjacent thread blocks leading to reduced data reuse
and more global memory references. The achieved arithmetic
intensity is thus expected to be less than 72.75.

For the Maxwell generation GPUs, the peak memory
bandwidth is 224 GB/sec and the peak compute rate is 4,612
GFLOP/sec, leading to a required arithmetic intensity of
roughly 82.4. Similarly, for Pascal P100 and Volta V100, the
required arithmetic intensity to sustain their peak compute rates
are (10 TFLOP/sec / 720 GB/sec) 55.56 and (15 TFLOP/sec
/ 900 GB/sec) 66.64, respectively. We observe a reduction in
the width of the memory wall [14], [15] from Maxwell to
Pascal. The reason is a different memory technology, GDDR5
in Maxwell vs HBM2 (on-chip stacked memory) in Pascal. In
transition from Maxwell to Pascal, the memory bandwidth is
increased by a factor of three whereas the peak compute rate
is increased by a factor of two.

However, there is no other new memory technology in sight
for another jump in the memory bandwidth. For example, the
memory technology remains largely the same from Pascal to
Volta. As a result, we observe that the memory wall resumed

553

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

z-a
xis

x-axis
y-
ax

is

z-a
xis

x-axis

y-
ax

is

Fig. 2. A 3-D illustration of stencils (a)55-point stencil to calculate momentum with cross derivative term (b)19-point stencil to calculate momentum without
cross derivative term

Fig. 3. Neighbour thread blocks in an xy-plane where grid points represented
as small “squares” use grid points in neighbor thread-block (TB) represented
as “cross” as halos and vice versa

its trend to widen, requiring more reuse per operand for full
GPU compute rate utilization. In the ideal case, where the
reuse factor equals to the number of grid points in the stencil,
the proposed approach provides enough reuse to be compute
bound in both Pascal and Volta generations. However, the reuse
is affected by the halo-zones and various limiting factors in
both hardware and software. As a result, the sustained compute
throughput for stencil applications tends to be significantly
lower than the possible peak for these GPU generations.

C. Limited Storage

Another challenge arises from the large size of the stencils.
Let us consider a small CUDA thread block having only one
warp with (32,1,1) threads in (x,y,z) dimensions. A warp is
the smallest unit of threads for lock-step execution. Assume
that each thread updates one grid point. For an order-3 stencil,
a thread block needs to access 3 halo grid points on each
side. For a thread block with only one warp the number of
grid points needed are 38 × 7 × 7 = 1862. For a hydrody-
namic solver updating only velocity vector and density scalar
in single precision, by storing all the input grid points in
the shared memory, the number of bytes needed would be
1862× 4(physical quantities)× 4(bytes/float) = 29, 792 bytes.
Keeping in view that the size of shared memory per streaming
multiprocessor (SM) is 96 KB for the latest GPU generation,
only �96000 bytes/29, 792 bytes� = 3 thread blocks would
be able to get scheduled to each SM at a time. If the GPU is
capable to support 64 active warps per SM, 3 thread blocks

with a total of 3 warps would lead to 3/64 = 4.6% occupancy.
With such low occupancy, there are not enough active warps to
hide memory latency and fully utilizing the compute resources.
Furthermore, the small number of grid points updated by
each thread block severely limits the achievable arithmetic
intensity ratio and thus limits the sustainable compute rate to
an extremely small fraction of the peak compute rate. This is
because the number of halo grid points far exceeds the number
of grid points being updated for each thread block. Increasing
the number of warps per thread block and thus the number of
grid points updated by each thread block would increase thread
level parallelism as well as the data reuse. This can indeed
be beneficial in memory bandwidth. However, the number of
bytes required by each thread block also increases, which can
unfortunately further reduce the occupancy per SM.

III. RELATED WORK

Magnetohydrodynamic (MHD) simulations [11], [12], [9],
[10], which require complex 3D stencils and up to 1010 grid
points, employ a multiple of 104 CPU cores and up to 20
million CPU hours. “Pencil Code” [13] is a state-of-the-art
CPU production codes for high-order finite difference codes,
used for MHD simulations. Due to the limited throughput of
CPU based clusters “Pencil Code” captures only the global
phenomena and not the local phenomena such as “sun spot”
formation. Since GPUs can provide much higher throughput
for applications with regular data access pattern than CPUs,
GPUs have been widely explored for stencil computations.

Earlier GPU stencil implementations [18], [19], [20]
mainly considered only axis aligned grid points and are in-
efficient when solving for non-axis aligned grid points. Time-
tiling [24], [25], [26], [27] combines calculations from multiple
time steps where shared memory is used to store intermediate
results, reducing the number of thread blocks that can be
simultaneously scheduled per SM. Applying time-tiling for 3D
stencils, requires the thread block size to be reduced due to the
limited amount of shared memory available in the GPU. Fur-
thermore, time-tiling also suffers from computation overhead
due to redundant calculations at halo regions. Sliding-window
time-tiling [28] overcomes large shared memory requirement

554

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

with 3D stencils. However, the technique still requires multiple
shared memory buffers to cache the planes required to update
a single plane. For Nvidia Kepler and Maxwell GPUs, time-
tiling is restricted to only two time steps for an order-1 stencil
in order to update only one physical quantity. When the stencil
size and the number of quantities to update are increased,
this technique faces significant reduction in GPU occupancy.
Time-tiling is orthogonal to our proposed approach, however
the interaction between ”SWiC” and time-tiling is outside the
scope of this work.

A number of strategies for non-axis aligned stencils have
been proposed [21], [22], [23], however, these techniques are
limited to comparatively smaller size stencils. Furthermore,
in order to handle off-axis grid points current approaches
require all the relevant input planes to be cached in shared
memory (3D caching) in order to update a plane at the
cost of reduced GPU occupancy. Domain specific language
(DSL) for stencil computations [30], has been proposed with
the ability to reorder instructions to reduce register pressure.
However, it currently does not have the ability to automatically
apply the optimizations proposed in our work. For all of the
above methods the major concern in achieving high GPU
performance has been the large shared memory foot-print.

In order to mitigate the large memory foot-print needed for
large non-axis aligned stencils, another approach decomposes
the stencil into two passes and the method is indicated as
19P [6]. This method simplifies the stencil, such that instead
of using a 55-point stencil, Fig. 2(a), it uses a 19-point
stencil, Fig. 2(b) in each pass. However, the drawbacks of
this technique are: 1) Smaller data reuse factor because of
less number of points per stencil in each pass compared to a
single pass approach; 2) Write back of partial results to the
global memory after the first pass which increases the global
memory traffic; 3) Redundant calculations are needed on the
outer halos; 4) The simplification of the stencil may not be
possible in every application; 5) The communication overhead
per time step is high. In Table I we formulate the number of

TABLE I. NUMBER OF GRID POINTS IN HALO EXCHANGE

Method Number of Halo Points per Quantity
19P* (N + 1) × (NxNy + NyNz + NzNx)(FDM-Order))

SWiC
N × FDM-Order × ((NxNy + NyNz + NzNx)+
FDM-Order × (Nx + Ny + Nz))

grid points that are needed to be communicated for the 19P
approach, where N is the number of quantities and Nx,y,z

are grid dimensions. The term (N + 1) in 19P comes from
the fact that in addition to store the final result it also needs
to communicate the intermediate results after the first pass.
For SWiC the additional term FDM-Order× (Nx +Ny +Nz)
represents the dimension of an edge shown in Fig. 4, which
is significantly smaller than the rest of the halo regions. For
domain size of Nx,y,z = 128 and stencil-order of 3 the number
of halo points in a hydrodynamic simulation for 19P and SWiC
are 294912×5 and 308736×4, respectively. SWiC has a 16%
lower communication overhead than the 19P approach.

In this work we proposed a new strategy for computing
non-axis aligned stencil computation, which is also applicable
to other more general stencils without performance degrada-
tion. Our approach does not requiring 3D caching in the shared

*
No 3D caching needed in shared memory as similar to SWiC but has more communication overhead

Fig. 4. An illustration of 3D grid with the compute domain at the center,
surrounded by halos and edges.

z-
ax

is

Fig. 5. An overview of application flow: Threads enter the integration loop
and copy the current z-plane value to the shared memory, starting from halo
region. Threads update their private accumulators with partial sums consuming
the values from the shared memory. One accumulator with the final result is
stored back to the global memory and is reused for the upcoming grid point
at z-plane Pc+1+hd, where ‘c’ and ‘hd’ is the index of current z-plane and
halo depth, respectively. Once the grid is updated, the pointers for input and
output grids are swapped, making the output from integration time step i as
the input for integration step i+1.

memory, and instead “Scatters” the input grid-points to output
register queues. To our knowledge the work proposed in this
paper has not been considered in any prior work whether it is
hand-tuned code or DSL automatic code generation.

IV. THE DESIGN AND IMPLEMENTATION OF SWIC

An overview of the 3D grid used is shown in Fig. 4. The
stencil sweeps through the compute domain shown as big cube
in the center (green) surrounded by the halo regions (orange
and yellow). A high level view of different steps in “SWiC” are
shown in Fig. 5. Compared to the prior work where an input
register queue per thread is used to store the input operands, we
manage an output register queue per thread of the same length,
acting as accumulators for the partial outputs. Regardless of
the stencil pattern, axis or non-axis aligned, we read a 2D
tile/plane from the global memory into shared memory, step A.
White small squares in the shared memory in Fig. 5 indicates
the pattern of the data points needed by a single thread, at the
center of the thread block, in order to update it’s private output
register queue. This pattern is the same for each thread in
the thread block with it’s respective offset. Each of the points
in the pattern contributes to the partial sum of one or more

555

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 SWiC
Require: Integer i belongs to the set of indices of full domain D including boundaries.
Require: Accumulator A of size (1 + 2 × hd) where hd is the halo depth
Require: B is boundary region in D
Require: Subscript s indicates axis aligned grid points within stencil
Require: Subscript p indicates stencil grid points at current plane along axis x,y and

diagonal xy
Require: Ai is the accumulator corresponding to input at index i

for integration step s = 1 to 3 do
for all i ∈ D & i � B in parallel do

ρ[i] = Compute rho(ρs, ...)
A[-hd:hd] = Compute partial gradient of divergence of velocity(up)
if Ai is ready then

u[i] = ũ[i] + Ai

end if
Store update to the global memory for u[i] and ρ[i]

end for
Exchange periodic boundary conditions for ρ and u

end for

of the private accumulators via “Scatter”, step B. Note that
the direction of the Z has been rotated so it is perpendicular
to the page to make the drawing more readable. Once the
computation is complete for the current z-plane, thread moves
to the next plane, and adds another partial sum to it’s private
accumulators. When the sum in the oldest accumulator is
ready, it is sent to the global memory, step C. This accumulator
is then reused for the grid point at z-plane Pc+1+hd, where ‘c’
and ‘hd’ is the index of the current z-plane and halo depth,
respectively. At the step D pointers for input and output grid
points are swapped. Scatter is applied in the Z direction in
which a thread is streaming through.

To understand the algorithm in more detail, let us now
consider different states (steps) of SWiC in Fig. 6, which
presents the updates made by a thread with index(i,j) to
its private accumulators Ai,j(−hd : +hd) as it traverses
through z-planes. Here notation Ai,j(−hd : +hd) means an
accumulator holding the partial sums for grid points on a single
lane along the z-plane located at row ‘i’ and column ‘j’ on xy
plane. Here (−hd : +hd) is the window size of accumulator
which spans over past ‘hd′, current and future ‘hd′ z-planes.
The length of accumulator window is 2×stencil-order+1. The
stencil we use in Fig. 6 is of order 2 and also has off-axis grid
points as in Fig. 2(a). The color at each state of the accumulator
represents the points used to update its contents, as detailed in
the bottom right corner of the Fig. 6. The status and activities
of the accumulators are shown at the bottom left corner and
the an accumulator’s color at any state indicates the color of
the points it uses in that state. The accumulator is circled in the
bottom part of the Fig. 6 when it has the contributions from
all the partial sums and the final result is ready for the write
back to the global memory. The first column at the bottom of
Fig. 6 indicates that the final content of Ai,j(−2) is the sum of
the contributions made to the accumulator at different states.
At state 1 it uses red and green grid points, at state 2 light
blue and green grid points, at state 3 all the color grid points
at plane Pc, at state 4 light blue and green grid points, and
finally at state 5 red and green grid points. At the end of state
5 the content of accumulator Ai,j(−2) is complete and ready
to be written back to the global memory.

Following are the per thread steps in SWiC, as shown in
Algorithm 1:

1) Set the index of current z-plane ‘Pc’ pointing to the
front halo as shown in state 1.

Algorithm 2 19P
Require: Integer i belongs to the set of indices of the full domain D including

boundaries.
Require: density(ρ) and velocity(u) as input.
Require: B is boundary region in D
Require: Subscript s indicates axis aligned grid points within stencil

for integration step s = 1 to 3 do
First pass kernel:

for all i ∈ D in parallel do
if i � B then

ρ[i] = Compute rho(ρs, ...)

ũ[i] = Compute partial velocity(us, ...)
end if
if i ∈ B then

udiv[i] = Compute divergence(us, ...)
end if
Store to the global memory ũ[i], udiv[i] and ρ[i]

end for
Periodic boundary exchange(udiv)

CUDA implicit synchronize
Second pass kernel:

for all i ∈ D&i � B in parallel do
Read from global memory ũ[i], udiv[i]

u[i]=Gradient of divergence(udivs , ...)+ũ[i]
end for

Store to the global memory u[i]
Periodic boundary exchange(ρ, u)

end for

2) Read the 2D tile of input grid points from the global
memory at the plane (i,j,Pc) to the shared memory as
illustrated in Fig. 5 step A.

3) Read from the shared memory all the grid points
required to update Ai,j(−2 : +2). The green grid
point at the center of each plane is also the value
which needs to be updated. Thus, in addition to the
partial contributions a thread makes, the value to be
updated is also added to the accumulator.

4) The result in the oldest accumulator is written back to
global memory, as shown in step C of Fig. 5. In Fig.
6 the first result is ready at state 5 stored in Ai,j(−2).

5) Shift the contents of output accumulator register
queue by 1. The accumulator at index Ai,j(hd+1) is
now free to be used for updating the input grid point
at Pc+hd+1.

6) Set Pc to the next z-plane and repeat steps (2) through
(5) until Pc is set to the last slice in the back halo
region.

7) Once the integration step over whole grid is complete,
the pointers for the input and the output grids are
swapped for the next integration step as in Fig. 5
step D. By swapping the pointers, the output of the
current integration step will become the input for next
integration step.

V. RESULTS AND DISCUSSION

In our experiments we use a high-order 3D stencil with
both axis and non-axis grid points as shown in Fig. 2(a). We
use periodic boundary exchanges after each integration step
along all of the faces of the compute domain, as shown in Fig.
7. Based on earlier work [6], [21], [22], [23], [24], [25], [26],
[27], [28], it is an already established fact that 3D caching in
shared memory increases the shared memory foot print which
reduces the number of thread blocks that can be simultaneously
scheduled for an SM. As discussed earlier in Section II, only
one thread block can be scheduled for an SM if the stencil
as in Fig. 2(a) is cached in 3D. The only recent work which

556

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. A 3-D illustration of a thread activity at index (i,j) as it traverses through the z planes. How a thread updates it accumulators Ai,j(−k : +k) is also
shown at each state

Fig. 7. An illustration of periodic boundary exchange along any face of the
compute domain. The width of halo plane is one grid point.

does not require 3D caching to solve the stencil in Fig. 2(a) is
19P method [6]. It is closest to our approach, open source and
part of the “Pencil Code” [13]. “Pencil Code” is a production
grade code widely used by the astrophysics community. In
order to make direct comparison with 19P method we have
implemented stencil computation for Navier-Stokes equation.
The 19P method implements the same Navier-Stokes equation

[6], to solve the 55 point stencil,depicted in Fig. 2(a). Rather
than using a 55 pint stencil, the 19P approach uses two phases
that only require a 19 point stencil, as in Fig. 2(b). A challenge
with Navier-Stokes equation is the stress tensor term which
couples the density and velocity. This coupling requires us to
maintain the input register queue of the same size as the output
register queue. It increases the register pressure for “SWiC”
and serves as a rigorous test case for our proposed approach.
A high-level pseudocode is also presented for both SWiC and
19P in Alg.1 and Alg.2, respectively, in order to clarify the
algorithmic differences when implementing the Navier-Stokes
equation. We will also show the results without the stress
tensor term which does not require “SWiC” to maintain the
input register queue.

We ran both the SWiC and 19P approach on the latest three
Nvidia GPU architectures: Maxwell, Pascal and Volta. CUDA
version 9.1 with default optimization level was set to -O3.
The input grid is initialized with constant ‘ρ’ and sinusoidal
‘u’ along one of the axis in single-precision. Single precision
simulations are valid for smaller runtimes and also for a class
of scientific applications such as MHD where 55-point stencil
as in Fig. 2(a) is used [35]. Single precision might suffice

557

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

TABLE II. MEASUREMENTS OF RUN TIME SPENT IN BOUNDARY

(HALO) EXCHANGE

ρ and u
Time (ms)

Grad(Div)
Time(ms)

% of 19P
runtime

% of SWiC
runtime

Volta 2563 0.3 0.062 8.6 13.4

5123 1.1 0.26 3.6 6.2

Pascal 2563 0.35 0.086 7.1 9.7

5123 1.47 0.35 3.4 4.9

Fig. 8. Trends across different thread block sizes for SWiC on Maxwell and
Volta for grid size of 1283 and 5123, respectively

for slow varying global phenomena in such MHD simulations.
However, if some interesting local phenomena happens where
high resolution is required, such as sun spot formation, the
simulation for that local region might be switched to double-
precision. All metrics were measured using Nvidia Visual
Profiler [34]. For Pascal and Volta, we also did experiment with
a larger grid size of 5123 , taking advantage of the the larger
memory capacity available in those architectures. For Maxwell
we used 2563 grid points as this is the largest cubic grid size
that fits on the Maxwell global memory. The runtime in Tables
III and IV also includes the time required for the boundary
exchange time as given in Table II. Those measurements are
roughly the same for 19P and SWiC and also significantly
smaller than the integration kernel. The time for exchanging
gradient of divergence is not relevant for SWiC since it only
takes one pass per stencil iteration.

A. Thread Block Tuning

We ran CUDA thread block size and dimension tuning
experiment on Maxwell, Pascal and Volta. The most optimal
configuration, in terms of both run time and global memory
transactions, was 32 threads (in the x dimension) by 4 threads
(in the y dimension), as shown in Fig. 8. If we increase thread

Fig. 9. Number of halo to compute grid point ratio for a thread block of
size (32,y,1)

block size to 32 by 8, occupancy is increased as there is a
bigger pool of warps available for latency tolerance. However,
with increased number of threads per block, the compiler is
given fewer registers per thread, which in turn causes register
spilling. We can observe the impact of register spilling in Fig.
8 as a sudden rise in the local memory traffic. When we drop
the thread block size back to 32 by 2, we increase the halo
to compute grid point overhead, as shown in Fig. 9 and also
the total number of grid points being used as halos. These
factors contribute to increase in global memory traffic as shown
in 8. We also observe a very slight degradation in run time.
We found these trends to be consistent over different GPU
architectures.

B. Maxwell, Pascal and Volta Runtimes With Varying Domain
Sizes

Table III shows a comparison between the proposed ap-
proach and the earlier GPU implementation 19P across three
different GPU architectures for grid size of 2563. Because
SWiC is designed to increase the achievable reuse, increase
workload on a thread and reduce the global memory traffic,
it shows a speedup of 1.6x, 1.37x and 1.55x over 19P for
Maxwell, Pascal and Volta respectively. Since 19P is faster
than 55P by 3.6x [6] which means that, indirectly, SWiC
is faster than 55P by 5.76x. For SWiC the ideal arithmetic
intensity, 72.75, is already higher than the 19P, 45.9, due to
the large stencil size we use as in Table III. By doing all the
calculation in one pass, avoiding extra memory references that
19P makes during the two passes, SWiC achieves higher reuse
factor for any of the GPU architectures we used. Reducing
global memory requests also reduces the demand for the
required load/store resources which help us reducing the stalls
due to data requests in SWiC compared to 19P. Further, we
also observed that with the increased reuse the execution speed
achieved in terms of FLOPS by the SWiC, is higher on average
by a factor of 2 than the 19P approach, for all the GPU
architectures.

On Nvidia Pascal P100 and Volta V100 we found SWiC
to be faster than 19P for grid size 5123 as shown in Table IV.
Note that this grid size does not fit into the Maxwell memory.
Similar to Maxwell we observe that SWiC has reduced global
memory transactions, better reuse, better peak performance and
reduced data stalls when compared to 19P. We also observed
that as we move from Pascal to Volta we get better performance
for both approaches. The primary reason is a significant reduc-
tion in Volta global memory transactions (a 73% improvement
in global memory efficiency for SWiC) compared to Pascal. As
per Nvidia specifications for Volta [33], up to 95% increase in
global memory efficiency compared to earlier architectures is

558

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

TABLE III. COMPARISON OF EXECUTION RUNTIME ON MAXWELL, PASCAL P100 AND VOLTA V100 FOR THE GRID SIZE 2563

Maxwell Pascal Volta
19P SWiC gain 19P SWiC gain 19P SWiC gain

Runtime(ms) 20.1 12.7 1.6 6.13 4.47 1.37 4.19 2.7 1.55

SWiC runtime gain over previous - - - 12.7 4.47 2.84 4.47 2.7 1.65

Global Loads in Gbytes 4.01 2.29 1.75 4.01 2.29 1.75 2.26 1.53 1.47

Global Stores in Gbytes 1.0 0.54 1.85 1.0 0.54 1.85 1.0 0.54 1.85

Ops/operand without reuse 2.41 1.32 0.54 2.41 1.32 0.54 2.41 1.32 0.54

Ops/operand with ideal reuse 45.9 72.76 1.6 45.9 72.75 1.6 45.9 72.75 1.6

Ops/operand achieved 3.87 8.5 2.2 3.87 8.5 2.2 6.88 12.74 1.85

Peak Performance achieved(%) 4.20 8.7 2.07 5.99 10.31 2.02 6.19 12.06 1.94

Data Request Stall(%) 73.8 54.3 1.35 65.65 52.97 1.23 87.25 65.16 1.29

Fig. 10. Roofline analysis indicates that all the variants are memory bound
whereas SWiC outperforms 19P in terms for achieved performance and data
reuse for a given problem size and architecture

Fig. 11. SWiC vs 19P comparison on Pascal and Volta for different grid
sizes

expected. For roofline analysis see Fig. 10. We also measured
the single GPU scaling behaviour of both SWiC and 19P on
Pascal and Volta as shown in Fig. 11(top) and found that the
proposed approach is not only faster but also scales better as
the problem size is increased. Furthermore we also observe
that the speedup advantage of SWiC over 19P increases with
the problem size, as shown in Fig. 11(bottom).

C. SWiC applied to small and simple stencils

In some scientific applications smaller stencil may suffice
the requirement. We investigated application performance with
smaller stencil sizes, 19-point and 37-point, requiring one and
two axis-aligned and non-axis-aligned neighbor grid points,
respectively. The results of the experiment are shown in Table
V. We performed measurements on Maxwell, Pascal and Volta.
We observed that even for smaller stencil size SWiC gains a
speed up over 19P ranging from 1.51 to 1.7 times. In order
to compare with the earlier approaches using 2D caching with
simple 19P stencil we further run the experiment without the
input register queue by ignoring the stress tensor term in
Navier-Stokes equation. In this case the input register queue
is not required and the stencil is simplified to a 19 point
stencil as in 2(b). We also ran the implementation as used
in multiples of earlier work [18], [19], [20], [6] and compared
it with the SWiC applied to 19 point stencil. The results are
shown in Table VI. The SWiC register usage is at the same
level as the prior approach with 2D caching without any loss
in performance.

D. Weak scaling

This section addresses our preliminary work on scaling
which we would like to extend as mentioned in our future
work. We performed weak scaling experiment on BlueWaters
[31]. The software environment is a 64-bit linux OS. We
use GNU gcc 4.9.3 and Nvidia nvcc 7.5.17 compilers. Each
GPU node in BW is equipped with Kepler GPU. This is
our preliminary experiment on scaling as we currently do
not overlap communication with the execution. The timings
were recorded around the main kernel execution and MPI
communication happening between the nodes. The problem
size is changed by changing the number of z-planes. The
maximum number of GPUs used is 64. In this weak scaling
experiment, the per-GPU problem size is fixed at 2563 and
we are able to achieve around 96% efficiency for 64 GPUs in
preserving the baseline run time, as shown in Fig. 12.

VI. FUTURE WORK AND CONCLUSIONS

Our next few steps include 1) Executing scaling with over-
lapped communication and computation as explained above,
2) Scaling experiments on more recent generations of GPUs
in multi-node setup, 3) Comparison to the scaling behaviour
with the prior methods should also be done.

559

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. COMPARISON OF EXECUTION RUNTIME ON PASCAL P100 AND VOLTA V100 FOR THE GRID SIZE 5123

Pascal Volta
19P SWiC gain 19P SWiC gain

Runtime 50.9ms 36.8ms 1.38 35.1ms 21.8ms 1.6

Runtime gain over Pascal - - - 1.45 1.68 1.16

Global Loads in Gbytes 32.14 18.34 1.7 16.74 10.57 1.5

Global Stores in Gbytes 8.0 4.3 1.86 8.0 4.3 1.86

Ops/operand without reuse 2.41 1.32 0.54 2.41 1.32 0.54

Ops/operand with ideal reuse 45.9 72.75 1.6 45.9 72.75 1.6

Ops/operand achieved 3.87 8.51 2.2 7.43 14.77 1.98

Peak Performance achieved(%) 5.77 10.02 1.73 5.91 11.95 2.02

Data Request Stall(%) 61.2 44.3 1.38 82.03 66.24 1.23

TABLE V. RUNTIME PER INTEGRATION STEP IN MS ON MAXWELL

WITH GRID SIZE 2563 AND PASCAL AND VOLTA WITH GRID SIZE 5123

FOR SMALLER STENCILS CONTAINING BOTH AXIS- AND NON-AXIS

ALIGNED GRID POINTS

37-point stencil 19-point stencil
19P SWiC gain 19P SWiC gain

Maxwell 18.87 12.53 1.51 15.34 9.67 1.6

Pascal 43.2 34.1 1.26 67.9 47.3 1.43

Volta 30 20.1 1.49 25.1 14.7 1.7

TABLE VI. COMPARISON ON VOLTA WITH GRID SIZE 5123

prior approach with 2D caching SWiC with Less Register Usage

Runtime ms 22.8 21.3

Occupancy(%) 49.7 49.8

Registers(%) 64 64

Fig. 12. Scaling for SWiC on 64 GPUs on BW[31]: For strong scaling grid
size per GPU is 128 × 128 × (4096/No. of GPUs) and for weak scaling
domain Size per GPU remains at 2563

This paper presents SWiC to perform 3D stencil computa-
tion without the need for 3D caching, even for stencils with off-
axis grid points. This approach reduces global memory access,
data movement within a single GPU, and the number of halo
exchanges. Results demonstrate faster execution than state-of-
the-art for several stencil sizes and better scaling for larger grid
sizes per GPU. Results further compares performance of SWiC
with 19P approach which also does not require 3D caching, on
the latest three generations of GPU architectures. The approach
also depicts good weak scaling performance.

REFERENCES

[1] Polyanin, A. D. (2002), Handbook of Linear Partial Differential Equa-
tions for Engineers and Scientists, Boca Raton: Chapman & Hall/CRC
Press, ISBN 1-58488-299-9.

[2] H. Dursun, K. ichi Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia,
A. Nakano, and P. Vashishta, A multilevel parallelization framework for
high-order stencil computations, in Euro-Par, 2009, pp. 642653

[3] Dursun, H., Kunaseth, M., Nomura, K., Chame, J., Lucas, R.F., Chen,
C., Hall, M., Kalia, R.K., Nakano, A., and Vashishta, P. Hierarchical

parallelization and optimization of high-order stencil computations on
multicore clusters. The Journal of Supercomputing, 62, 2012, 946966

[4] T. Shimokawabe, T. Aoki, N. Onodera, ”High-productivity framework
on GPU-rich supercomputers for operational weather prediction code
ASUCA”, Proceedings of the 2014 ACM/IEEE International Conference
for High Performance Computing Networking Storage and Analysis ser.
SC’14, pp. 1-11, 2014.

[5] Temam, Roger (2001), NavierStokes Equations, Theory and Numerical
Analysis, AMS Chelsea, pp. 107112

[6] Johannes Pekkilä, Miikka S. Väisälä, Maarit J. Käpylä, Petri J. Käpylä,
Omer Anjum, Methods for compressible fluid simulation on GPUs
using high-order finite differences, Computer Physics Communications,
Volume 217, August 2017, Pages 11-22.

[7] J. A. Stratton et al., ”Algorithm and Data Optimization Techniques for
Scaling to Massively Threaded Systems,” in Computer, vol. 45, no. 8,
pp. 26-32, August 2012

[8] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick.
2008. Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (SC ’08). IEEE Press, Piscataway, NJ,
USA,

[9] Kulikov, I.: GPUPEGAS: A New GPU accelerated Hydrodynamic Code
for Numerical Simulations of Interacting Galaxies, Astrophys. J. Suppl.,
214, 12, 2014

[10] Schneider, E. E.; Robertson, B. E., Cholla: A New Massively Parallel
Hydrodynamics Code For Astrophysical Simulation, arXiv:1410.4194,
2014

[11] Hotta, H.; Rempel, M.; Yokoyama, T., High resolution Calculations
of the Solar Global Convection with the Reduced Speed of Sound
Technique. I. The Structure of the Convection and the Magnetic Field
without the Rotation, Astrophys. J. (2014a)

[12] Beresnyak, A., Spectra of Strong Magnetohydrodynamic Turbulence
from High resolution Simulations, Astrophys. J. Lett., 2014

[13] (Online May 20 2018) http://pencil-code.nordita.org/

[14] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall:
implications of the obvious. SIGARCH Comput. Archit. News 23, 1
(March 1995), 20-24

[15] http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[16] (Online March 15, 2018) https://www.top500.org/

[17] Antonio Ferriz-Mas, Manuel Núñez (Eds.), Advances in Nonlinear
Dynamics, CRC Press (2003), pp. 269-344

[18] Paulius Micikevicius. 2009. 3D finite difference computation on GPUs
using CUDA. In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU-2). ACM, New York,
NY, USA, 79-84

[19] A. Vizitiu, L. Itu, C. Ni and C. Suciu, ”Optimized three-dimensional
stencil computation on Fermi and Kepler GPUs,” 2014 IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
2014, pp. 1-6.

[20] S. Cygert, D. Kikoa, J. Porter-Sobieraj, J. Sikorski,M. Sodkowski, Using
GPUs for parallel stencil computations in relativist ic hydrodynamic

560

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

simulation, in: Parallel Processing and Applied Mathematics, Vol. 8384
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2014,
pp. 500509

[21] Y. Zhang, F. Mueller, “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters”, in: Proceedings of the Tenth International
Symposium on Code Generation and Optimization, ACM, New York,
NY, USA, 2012, pp. 155164.

[22] E. H. Phillips and M. Fatica, “Implementing the Himeno benchmark
with CUDA on GPU clusters”, 2010 IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), Atlanta, GA, 2010, pp. 1-
10.

[23] A. Nguyen, N. Satish, J. Chhugani, C. Kim, P. Dubey, 3.5D blocking
optimization for stencil computations on modern CPUs and GPUs,
in: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, IEEE
Computer Society, Washington, DC, USA, 2010

[24] M. Christen, O. Schenk, and H. Burkhart. PATUS: A code generation
and autotuning framework for parallel iterative stencil computations on
modern microarchitectures, IPDPS 2011.

[25] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on GPU architectures. ICS 12,
pages, ACM, 2012.

[26] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan, and
S. Verdoolaege. Split tiling for GPUs: Automatic parallelization using
trapezoidal tiles, GPGPU-6. ACM, 2013.

[27] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The pochoir stencil compiler, SPAA 2011. ACM.

[28] P. S. Rawat et al., ”Resource conscious reuse-driven tiling for GPUs,”
PACT, Haifa, 2016.

[29] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod
Grover, Louis-Nol Pouchet, and P. Sadayappan. 2016. Effective resource
management for enhancing performance of 2D and 3D stencils on GPUs,
(GPGPU 2016)

[30] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam,
Louis-Nol Pouchet, Atanas Rountev, and P. Sadayappan. 2018. Register
optimizations for stencils on GPUs. (PPoPP ’18).

[31] NCSA, Blue Waters user portal user guide, 2012.

[32] Temam, Roger (2001), NavierStokes Equations, Theory and Numerical
Analysis, AMS Chelsea, pp. 107112

[33] http://docs.nvidia.com/cuda/volta-tuning-guide/index.html

[34] (Online March 20 2018) https://developer.nvidia.com/nvidia-visual-
profiler

[35] K. Reuter; F. Jenko; C. B. Forest; R. A. Bayliss,“A parallel implementa-
tion of an MHD code for the simulation of mechanically driven, turbulent
dynamos in spherical geometry”, Computer Physics Communications
Volume 179, Issue 4, 2008.

561

Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:06:49 UTC from IEEE Xplore. Restrictions apply.

