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Abstract—This work extends our previous research entitled “MemXCT: Memory-centric X-ray CT Reconstruction with Massive
Parallelization” that was originally published at SC19 conference (Hidayetoglu et al., 2019) with reproducibility of the computational
imaging performance. X-ray computed tomography (XCT) is regularly used at synchrotron light sources to study the internal
morphology of materials at high resolution. However, experimental constraints, such as radiation sensitivity, can result in noisy or
undersampled measurements. Further, depending on the resolution, sample size and data acquisition rates, the resulting noisy dataset
can be in the order of terabytes. Advanced iterative reconstruction techniques can produce high-quality images from noisy
measurements, but their computational requirements have made their use an exception rather than the rule. We propose a novel
memory-centric approach that avoids redundant computations at the expense of additional memory complexity. We develop a
memory-centric iterative reconstruction system, MemXCT, that uses an optimized SpMV implementation with two-level pseudo-Hilbert
ordering and multi-stage input buffering. We evaluate MemXCT on various supercomputer architectures involving KNL and GPU.
MemXCT can reconstruct a large (11K x 11K) mouse brain tomogram in 10 seconds using 4096 KNL nodes (256K cores). The results
presented in our original article at the SC19 were based on large-scale supercomputing resources. The MemXCT application was
selected for the Student Cluster Competition (SCC) Reproducibility Challenge and evaluated on a variety of cloud computing resources
by universities around the world in the SC20 conference. We summarize the results of the top-ranked SCC Reproducibility Challenge
teams and identify the most pertinent measures for ensuring the reproducibility of our experiments in this article.

Index Terms—X-ray tomography, space-filling curves, cache utilization, knights landing, GPU computing, SpMV, reproducibility

1 INTRODUCTION

-RAY computed tomography (XCT) is a widely used non-

destructive 3D imaging technique for observing and
understanding the internal morphology of samples. Synchro-
tron light sources, such as the Advanced Photon Source
(APS), can provide high-brilliance X-rays that enable tomo-
graphic imaging of centimeter sized samples at sub-microme-
ter (um) spatial resolution. Such experiments can generate
from a few GBs to TBs of data volumes in a short time period
with the typical pixelated detectors that can run at 16 GB/
s [2]. However, the quality of data collected from CT experi-
ments depends heavily on factors such as radiation exposure
time (dose) and target spatial resolution. Much effort has been
devoted to develop and implement advanced reconstruction
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algorithms to improve image quality when collected data are
noisy or imperfect (e.g., due to limited dose).

Modern XCT reconstruction approaches involve either (i)
direct solvers based on analytical inversion or (ii) iterative
solvers that can accurately model the experimental condi-
tions and/or constrain the solution based on prior knowl-
edge of the sample. Analytical methods such as the filtered
backprojection (FBP) algorithm are computationally efficient,
but reconstruction quality is often poor when measurements
are noisy or undersampled. Iterative methods, on the other
hand, can use advanced optimization and regularization
techniques to handle inherent noise in X-ray measure-
ments [4], [5], [6], [7], [8], [9], [10]. However, these methods
are computationally more demanding than the analytical
methods, since forward and backprojection operations
require many (irregular) accesses and computation at each
iteration. Thus, efficient implementation and parallelization
are crucial for high-quality large-scale image reconstructions.

Most state-of-the-art reconstruction software and librar-
ies can perform parallel reconstruction to some extent.
However, these implementations mostly rely on data repli-
cation [11], [12] and/or redundant computations [13], [14],
each of which significantly limits the runtime performance
of the system due to repeated computation of intermediate
indices of ray tracing and irregular data accesses.

MemXCT, our advanced reconstruction system, uses a
memory-centric approach to avoid redundant computation
by removing on-the-fly operations at the expense of greater
memory complexity. Specifically, it utilizes an optimized
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Fig. 1. Multiple zooms on a single 11293x 11293 2D slice of a mouse brain image generated by reconstruction, with the methods described here,
from a single sinogram with size 4501 x11293. Data were collected by Dyer et al. [3] at the APS. Single-slice reconstruction with 30 CG iterations on
4096 KNL nodes takes 10 seconds. Memory footprint of the application is 10.2 TB. The full mouse brain consists of 11293 slices.

sparse matrix-vector multiplication (SpMV) implementation
with multi-stage buffering and two-level pseudo-Hilbert ordering
to optimize data communication, partitioning, and accesses
at different analysis levels and on both measurement (sino-
gram) and reconstructed (tomogram) data.

MemXCT memoizes on-the-fly operations and therefore
requires more memory than alternatives. However, its over-
all per-node memory footprint decreases linearly with
increasing computing resources, promoting scalability with
massive parallelization and enabling iterative reconstruc-
tion of extremely large datasets with efficient resource use.
Further, MemXCT stores intermediate data structures in
compressed format and locality-enhancing layout order to
minimize memory footprint and data movement.

To illustrate the practical implications of MemXCT optimi-
zations, we show in Fig. 1a 2D tomogram from a 3D mouse
brain image with total size 11293 x 11293 x 11293, obtained by
reconstructing a sinogram with 4501 x 11293 dimensions.
This single-slice reconstruction was generated with 30 conju-
gate gradient (CG) iterations in about 10 seconds on 4096 KNL
nodes (256K cores) using MemXCT. This high speed capabil-
ity makes it feasible, for the first time, to apply advanced itera-
tive reconstruction algorithms to extremely large CT datasets.
The multi-scale nature of the reconstruction is presented by
zooming progressively to the brain arteries, where great detail
can be seen. High reconstruction quality at such scales is
important as subsequent data analysis steps, such as segmen-
tation of blood vessels and myelinated axon tracts, are highly
dependent on the quality of the reconstruction.

The MemXCT work was originally published at the SC19
conference[1]. In 2020, the MemXCT was selected as the
benchmark application for the Student Cluster Competition
(SCC) Reproducibility Challenge and evaluated on a variety
of cloud computing resources by 16 university teams. Stu-
dents were tasked to reconstruct several images using
MemXCT and compared their measured performance
results with the evaluations reported in the SC19 paper as
well as in this paper. We summarize the SCC Reproducibil-
ity Challenge results of the top-ranked SCC teams and pres-
ent key insights from their results at the end of the paper.

The principal contributions of this paper are as follows:

e We propose a memory-centric approach that uses an
extended SpMV to address race conditions due to scat-
ter operations. Our implementation replaces scatter
operations on sinogram and tomogram domains with
gather operations.

e We implement a two-level pseudo-Hilbert ordering to
organize communications and data accesses, further
improving communication performance, utilization
of different levels of memory hierarchy, and cache
utilization.

e We introduce a multi-stage input buffering. Domain
partitioning improves process-level data communi-
cation and locality; multi-stage buffering enables
data reuse in first-level caches and minimizes mem-
ory latency.

e We extensively evaluate MemXCT performance on
both KNL and GPU systems up to 4096 nodes,
and show architecture-specific considerations and
optimizations.

e We present the key observations from student
teams who successfully reproduced the SC19
paper results and identify the key measures in the
MemXCT repository that are the most helpful to
their efforts.

2 BACKGROUND AND MOTIVATION

We first explain XCT experiments and their data acquisition
process. Then, we describe the steps involved in iterative
image reconstruction. Finally, we explain computational
bottlenecks in iterative reconstruction approaches and intro-
duce our solutions.

2.1 Data Acquisition and Measurement Process

In an XCT experiment, the sample is placed on a rotation
stage and illuminated by an X-ray source, while collect-
ing 2D images through a detector as the sample is being
rotated: see Fig. 2. The mathematical model of the mea-
surement process is based on Beer's law [15] that
describes interaction between X-rays and matter: Iy(s) =
In(s)exp[—pe(s)], where Iy(s) is the incident X-ray illumi-
nation on the sample and Iy(s) are the collected measure-
ments at a number of different 0 angles as a result of a
tomographic scan.

In Fig. 2, a set of collected projections from a sample is
shown with p,. Considering parallel beam geometry, the
sinogram py(s) is a cross section of projections (shown in
blue grid on py) that consists of I, measurements from f.
The goal of a tomographic reconstruction algorithm is to
recover 2D image slice (tomogram) from its corresponding
sinogram py(s).
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Fig. 2. (a) lllustration of the experimental setup where a target object is
illumined with a synchrotron light source. Photons are attenuated by dif-
ferent amounts according to the object’s attenuation coefficient profile
and the photons’ travel distance within the object. (b) Presentation of
how the detector measurements are organized and stored as projections
(from different angles). Once the experiment is completed, the sino-
grams are extracted from the projections, and the images corresponding
to the object are iteratively reconstructed as shown in (c).

2.2 lterative Formulation
Tomographic reconstruction solves the problem

& = argmin ||y — Az||* + R(z), (1)
zeC

where 2 is the reconstructed tomogram, A is the forward
model, y is the sinogram, R(x) is a regularizer functional, =
is the search variable, and C'is a constraint on z.

Almost all iterative solvers based on gradient descent
perform three common steps in each iteration as depicted in
Fig. 2. Specifically, for iteration 4: first, the residual r; =
y — Ax; is found through forward projection; second, the gra-
dient is found through backprojection as V||y— Az =
ATr;; and finally, the candidate solution is updated in the
negative-gradient direction as ;. = x; — aV|y — Az,
where « is the step size. Iterative approaches can also
involve additional updates due to regularizer R(x) and con-
straint C. However, this paper focuses on the common
computational costs involving aforementioned steps.

2.3 Forward Projection and Backprojection

Forward and backprojections are the two most computa-
tionally demanding kernels in iterative tomographic recon-
struction approaches. Many reconstruction libraries, such
as Trace and TomoPy [11], [14], implement Siddon’s algo-
rithm [16] to perform ray tracing on tomogram domain so
that the exact length and weight information on each voxel
can be computed for each intersecting X-ray. For forward
model, this information is used for computing the residuals,
whereas for backprojection they are used for gradient and
update operations. Since storing voxel indices and length
information for all rays and voxels require significant mem-
ory, most state-of-the-art approaches perform ray tracing
computations on-the-fly. For instance, a sinogram with
dimensions 1501 x 2048 requires 56 GB memory to store
intermediate data structures. Listing 1 illustrates the high
level implementation of iterative reconstruction and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

Compute-Centric XCT (CompXCT) Memory-Centric XCT (MemXCT)

‘ On-the-Fly Ray | Redundant Computation : ‘ SpMV Memory Latency
3 Tracing Lack of SIMD Parallelism | : (Baseline) '
Atomic Synchronization/ : ‘ 10ptimize '
3 Operations | Serialization . !
; i 1| Two-Level Pseudo- | Memory Latency !
1Scale ; Hilbert Ordering | Memory Bandwidth |
| Domain 3 Optimize ‘
; Duplication Communication ‘ |
e ! 1 | Multi-Stage Input ‘
Suitable for single node / small clusters Buffering Memory Bandwidth :

i 1Scale

o

Suitable for supercomputers

=

Communication

Fig. 3. Memory-centric and compute-centric approaches for XCT and
their areas for potential optimizations. Shades of black color indicate
higher contribution to performance bottleneck.

repetitive computations of indices and lengths arrays. We
term reconstruction algorithms that compute on-the-fly ray
tracing information as compute-centric XCT (CompXCT).

Listing 1. High Level Implementation of CompXCT

1 for (int i = 0; 1 < num_iters; ++1)
{ //iterations
2 for (int j =0; j < sinogram_rows; ++3J) {
3 float theta = rotations (j); // 0 for row j
4 for (int k=0; k < sinogram_cols; ++k) {
5 int **indices =
6 intersecting_voxels (j, k, theta,
tomogram) ;
7 float **1lengths =
8 compute_lengths (j, k, theta, tomogram) ;
9 float m = sinogram[j, k]; // Data for simulated
ray
10 float residual =
11 forward_model (m, indices, lengths,
tomogram) ;
12 // Apply inverse model and then update
tomogram

13  backprojection (residual, indices, lengths,
tomogram) ;

14 }

15 }

16 1}

2.4 Computational Bottlenecks and Overview of Our
Solution: MemXCT

Fig. 3 illustrates the techniques used for traditional
CompXCT and proposed MemXCT approaches in yellow
boxes. The existing bottlenecks and their influence are given
next to the areas for potential optimizations with different
shades of black, in which darker shades indicate higher con-
tribution to performance bottleneck.

CompXCT eliminates the need for storing intermediate
data structures; however, since these data structures are
recalculated for each iteration, they introduce additional
computational complexity to the execution. Further, on-the-
fly calculation of indices limits the optimizations for
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vectorization as repeated sorting and padding operations
nullify any performance benefit. As a remedy, MemXCT
embraces a memory-centric approach that memoizes ray-
tracing operations and performs efficient SpMV using com-
pressed (vectorizable) data structures on both sinogram and
tomogram domains. Further, the irregular data access pat-
terns are normalized using pseudo-Hilbert ordering and
first level cache utilization are improved using multi-stage
buffering. These optimizations result in high-performance
computations and converts performance bottlenecks from
computation to memory.

The parallelization of CompXCT approaches is typically
based on X-rays, where each measured ray can indepen-
dently be projected on tomogram domain. This type of par-
allelization performs well for forward projection kernel
(residual computation) since the main operation is reading
the intersected voxel values from tomogram domain, i.e.,
rays perform gather operations during forward projection.
However, subsequent backprojection and update steps
require synchronization among parallelized rays since there
can be many updates from different rays on the same voxel,
i.e., rays perform scatter operations during backprojection
and updates. Recent work deals with race conditions by
either applying atomic operations [17] or duplicating the
pixel domain across threads/processes and then perform-
ing a reduction [11], [12]. Unfortunately, the performance of
atomic operations hinges on hardware implementations,
which differ substantially across architectures [18], and typ-
ically results in significant performance degradation on
massively parallel architectures. Domain duplication is also
impractical for GPU-like architectures, since each parallel
unit requires a replica of the domain and the total memory
footprint almost always exceed available resources. Further,
distributed memory parallelization using duplication can
result in redundant communication cost [11].

In contrast, MemXCT partitions both sinogram and
tomogram domains among parallel units and transforms
scatter operations to gathers. Note that this transformation
can result in irregular data accesses on both domains, how-
ever our pseudo-Hilbert index ordering coupled with multi-
level buffering amortize performance penalty due to
irregular data accesses. MemXCT also exploits Hilbert
ordering (hence named two-level pseudo-Hilbert ordering)
for process-level domain partitioning, which results in effi-
cient communication and better connectivity between pro-
cesses [19], [20]. We describe these optimization in detail in
the following section.

3 MEMXCT OPTIMIZATIONS

In this section, we provide detailed information about
MemXCT. First, we explain the baseline implementation, in
which we focus on explicit SpMV operations. Then, we pres-
ent our system optimizations that use two-level pseudo-Hilbert
ordering and multi-stage input buffer. We also explain our dis-
tributed memory parallelization considerations with MPL.

3.1 Baseline Implementation

MemXCT performs forward projection and backprojection
operations as explicit SpMV operations to remove redun-
dant and inefficient computations. Listing 2 shows the

2017

baseline compressed sparse row (CSR) SpMV kernel used
for both forward and back projection. In forward projection,
x and y correspond to tomogram and sinogram data,
respectively, and vice-versa in backprojection. In either
case, ind and val data correspond to precomputed pixel-
ray intersection indices and lengths that are reused to avoid
redundant computation.

Listing 2. Baseline MemXCT Kernel

1 #pragma omp parallel for schedule(dynamic,
partsize)

2 for (int i =0; i <numrow; ++1) {

3 float acc =0;

4 //vectorize

5 for (int j =displ[i]; j <displ[i+1]; ++3)
6 acc+=x[ind[j]]1*valljl;

7 yI[il =acc;

8 1}

3.1.1  Regular and Irregular Accesses

Each fused multiply-add (FMA) operation in Listing 2 per-
forms three important memory accesses: ind and val are
regular, and x is irregular. The regular accesses are sequential
and hence exhibit low memory latency. The irregular
accesses to x exhibit long latency due to high L2 miss rates.
MemXCT addresses this problem by improving cache reuse
through novel data layout techniques that increase locality,
as illustrated in Section 3.2.

3.1.2 Row Partitioning & Parallelization

Listing 2 involves gather operations only and hence is suit-
able for massive parallelization. MemXCT parallelizes the
outer loop among row partitions. On KNL, partitions are dis-
tributed across dynamically scheduled OpenMP threads.
On GPU, each partition corresponds to a CUDA thread
block. Each OpenMP thread processes many row partitions,
whereas each CUDA thread processes a single row in a
partition.

3.1.3 Vectorization on KNL

MemXCT enables efficient instruction-level parallelization
through vectorization of the inner loop in Listing 2. Each
KNL vector-processing unit (VPU) can load multiple regu-
lar and irregular data, and multiply them in one step with
an AVX-512 instruction. Then, they perform parallel reduc-
tions on partial data, and add results to the accumulator.
We provide necessary data alignments for efficient
vectorization.

3.1.4 Coalesced Memory Access on GPU

Our GPU implementation modifies Listing 2 to use the ELL
(column-major) storage format instead of CSR. Transposed
ELL data structures provide coalesced memory access
through consecutive threads accessing consecutive memory
locations. We minimize redundant computations and mem-
ory accesses due to ELL format by performing zero padding
on thread-block (i.e., partition) level, rather than on matrix
level.
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Fig. 4. Two-level pseudo-Hilbert ordering and domain decomposition at
(a) tile level, (b) process level, and (c) thread level.

3.2 Two-Level Pseudo-Hilbert Ordering

MemXCT implements a two-level pseudo-Hilbert ordering
on both tomogram and sinogram data of arbitrary size. Fig. 4
shows an example for a 13 x 11 domain. First, the domain is
tiled with a minimum number of equi-sized square tiles with
dimension a power of two. In the figure, tile size is 4 x 4 and
12 tiles are used to cover the 13 x 11 domain. These tiles are
indexed with a Hilbert ordering for rectangular domains [21],
as shown in Fig. 4a. A second-level Hilbert ordering is then
applied to the data within each tile. Necessary rotations are
performed to provide data connectivity among tiles, so as to
achieve both data locality and connectivity for domain
decomposition at the process and thread levels, as discussed
next. The process-level domain decomposition is essential for
MPI parallelization, as discussed in Section 3.4.

3.2.1 Irregular Data Access Patterns

As shown in Fig. 5, the processing of a single sinogram or
tomogram results in a linear or a sinusoidal memory access
footprint, respectively. In this example, they perform 25 and
30 accesses on respective domains. With row-major (naive)
ordering of 2D data and 64 B cache line, each row in Fig. 5
would correspond to a single cache line. In this case, both
tomogram and sinogram data would have 16 cache misses,
yielding miss rates of 64% and 53%, respectively. Row-
major (or column-major) ordering of 2D domains is very
inefficient for XCT because of its poor cache locality. That is,
a single cache line does not provide enough data reuse
except on a few instances.

3.2.2 Cache Locality

In Fig. 5, Hilbert ordering maps each cache line to a 4 x 4
block in a 2D domain, increasing cache data reuse. As a
result, cache misses are reduced to six and seven, yielding
rates of 24% and 23% for forward projection and backprojec-
tion, respectively. Hilbert ordering is portable to different
cache-line sizes thanks to its recursive nature. The cache
locality provided by Hilbert ordering eliminates the mem-
ory latency bound of MemXCT to a great extent, as results
show in Section 4.2.2.

3.2.3 Partition Locality
Hilbert ordering not only provides cache locality but also
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is partitioned with respect to the index of y, as described in
Section 3.1.2. In MemXCT, each partition remains connected
at both the process and thread levels, thanks to the connec-
tivity provided by two-level pseudo Hilbert ordering. In
contrast, a Morton ordering would yield disconnected parti-
tions, since it does not guarantee adjacent memory locations
to have adjacent locations in the 2D domain. Partition local-
ity is essential for our further optimizations.

3.3 Multi-Stage Input Buffering

MemXCT implements a multi-stage buffering mechanism
for: (1) further reducing L2 cache miss rates of irregular data
by explicit staging of corresponding accesses on an L1 buffer,
and (2) reducing memory bandwidth consumed for index
data by using two-byte addressing. Listing 3 shows SpMV
kernel with input buffering, where stagedispl and stagenz
arrays correspond to starting points of (multi-stage) buffers
and number of (nonzero) elements in buffers, respectively.

Listing 3. Optimized MemXCT Kernel
1 #pragma omp parallel for schedule (dynamic)

2 for (int part = 0; part < numparts; ++part) {
3 float output [partsize] = {0};
4 float input [buffsize];
5 for (int stage =partdispl [part];
6 stage < partdispl [part+1]; +
+stage) {
7 int start = stagedispl [stage];
8 //vectorize
9 for (int i =0; i < stagenz[stage]; ++1i)
10 input[i] =x[map[start+i]];
11 for (int j=0; j <partsize; ++3j){
12 int start = stage*partsize;
13 //vectorize
14 for (int i =displ[start+3j];
15 i<displ[start+j+1]; ++1)
16 output [j] +=input [ind[i]]*vall[i];
17 }
18 }
19 int start = part*partsize;
20 //vectorize
21 for (int i =0; i <partsize; ++1i)
22 if (start+i < numrows)
23 y[start+i] +=output[i];
24}
3.3.1 Data Reuse From Input Buffer

Fig. 6a shows memory access footprints for processing a

partition locality. That is, the outer loop of SpMV in Listing 2 64 x 64 tomogram and sinogram partition in a 256 x 256
Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:10:46 UTC from IEEE Xplore. Restrictions apply.
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Fig. 6. (a) Tomogram and sinogram partitions and respective data
access footprints, and (b) multi-stage buffer shapes.

tomogram and sinogram domain, respectively. The tomo-
gram partition reads from the sinogram domain and the
sinogram partition from the tomogram domain. Data access
footprints are shown in tomogram and sinogram domains.
Darker shades represents higher data reuse. For processing
each partition, MemXCT explicitly moves required data
from memory to an L1 buffer through map at line 9 of List-
ing 3. Then it reuses buffered data for irregular accesses and
hence performs less memory access.

3.3.2 Multi-Staging

In a single-stage (naive) buffering, the required buffer size
grows with the problem geometry. If the buffer is too large,
it cancels the buffering benefit since it leaks into L2 or even
memory [22]. As a remedy, MemXCT implements a multi-
stage buffering strategy with a constant buffer size. In this
case, irregular data are accessed through multiple buffer
stagings. Stages are determined with respect to Hilbert
ordering, ensuring data locality. As an example, Fig. 6b
shows mapping of buffer stages on 2D tomogram and sino-
gram domains. With a buffer size of 32 KB, MemXCT per-
forms irregular accesses through four and three stages for
projection and backprojection, respectively. On KNLs,
buffer size should be smaller than 32 KB L1 cache to avoid
spill to L2 cache. On GPUs, the buffer is allocated through
CUDA shared memory, guaranteeing reuse from L1 cache.

3.3.3 Staging Overhead

Input buffering involves a staging overhead. On KNL, an
OpenMP thread stays idle while waiting staging to be com-
pleted. Similarly on GPU, CUDA threads across warps stall
for synchronization before and after each staging. Input
buffering also consumes some additional memory band-
width for reading map data. The next two subsections
describe two techniques for hiding buffering overhead and
also to save some bandwidth.
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3.3.4 Overlapping Staging and FMAs

MemXCT multi-stage buffering lends itself well to be
used by the underlined hardware to hide staging over-
head. On KNL, this is done through SMT (simultaneous
multithreading): when there are multiple threads run-
ning on a single core, the hardware scheduler finds over-
lapping opportunities across buffer stagings and FMAs
among threads. As a result, MemXCT enables effective
SMT utilization. Similarly, GPU hardware also takes
advantage of overlapping through block scheduling on
SMs (streaming multiprocessors).

3.3.5 Saving Memory Bandwidth

Hilbert ordering and input buffering eliminate most of the
memory latency due to irregular data accesses, and there-
fore MemXCT is bounded by memory-bandwidth con-
sumed by regular data. To alleviate this bottleneck, we use
16-bit addressing to access input buffer (see ind at line 14
on Listing 3), rather than 32-bit addressing (as in ind at line
6 on Listing 2). 16-bit addressing can address buffer sizes
up to 256 KB. This saves 25% of total bandwidth consump-
tion of regular data, and provides additional speedup (see
Section 4.2.3 for results.)

3.4 MPI Parallelization

Traditionally, one domain (either tomogram or sinogram) is
partitioned while the other is duplicated across all pro-
cesses. MemXCT partitions both tomogram and sinogram
domains by distributing tiles evenly across MPI processes,
as seen in Fig 4b. Each process is responsible for a single
tomogram subdomain and a single sinogram subdomain. Each
subdomain consists of a single or several tiles, e.g., subdo-
main 0 consists of tiles 0—2. While processes are not perfectly
load balanced, it can be improved by finer tile granularity at
the cost of more preprocessing.

3.4.1 Sparse Communications

MemXCT communicates only necessary data through
MPI_Alltoallv. To explain, Fig. 7b shows communica-
tion footprint of two 256 x 256 tomogram subdomains
shown in Fig. 7a. For example, tomogram subdomain 7
interacts only with sinogram subdomains 1, 2, 8-11, 13, and
14. Fig. 7c shows the corresponding communication matrix,
where each entry represents communication between two
processes. Communication size between each pair depends
on the interaction footprint, e.g., process 7 sends more data
to process 1 than 14, as seen in Fig. 7d. Partition locality pro-
vided by two-level pseudo-Hilbert ordering (described in
Section 3.2) minimizes the footprint, and hence increase
data reuse and reduce communications.

3.4.2 Overlapped Interactions

MemXCT communicates sinogram data rather than tomo-
gram data because: (1) sinogram data are smaller in many
applications, and (2) it yields more data reuse as compared
to tomogram data. In forward projection, tomogram subdo-
mains send partial sinogram data to corresponding sino-
gram subdomains where overlapped data are reduced, e.g.,

rocesses 8, 9, and 11 reduce partial sinogram data received
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from processes 7 and 10. In backprojection, processes dupli-
cate overlapped sinogram data and send them to interacted
processes which perform backprojections on their respec-
tive tomogram subdomains. The communication matrix for
backprojection is the transpose of the one in Fig. 7c. The
total amount of communications and load balancing for all
processes is shown in Fig. 7e.

3.4.3 Parallelization Overhead

MemXCT parallelization of forward projection mathemati-
cally corresponds to a factorization of the projection matrix
as A= RCA,. As a result, forward projection can be mod-
eled as three fundamental steps: A,, C, and R which corre-
spond to partial forward projection, communication, and
reduction operations. Backprojection can also be seen as
simply A" = ATC"R". The multiplication costs of 4, and
original A are the same because they involve the same num-
ber of O(MN?) nonzeroes. Thus, communication C' and
reduction R can be seen as the MemXCT parallelization
overhead. Both C'and R have O(MN+/P) nonzeroes, where
P is the number of processes. It is because when P quadru-
ples, total communication footprint on sinogram domain
doubles. For communications, there is an extra O(y/P) term
comes due to the handshake overhead between processes.
On the other hand, compute-centric approach involves race
conditions and hence it duplicates the tomogram domain
across all processes [11]. In that case, duplicated domains
has to be reduced through MPI_Allreduce at the end of
each backprojection, yielding O(NZ%log P) parallelization
overhead. Resulting computational complexities are shown
in Table 1.

3.5 Other Details

MemXCT requires an extra preprocessing step for avoiding
redundant and inefficient computations as opposed to a
compute-centric approach. The preprocessing involve: (1)
Hilbert ordering and domain decomposition, (2) ray tracing
for constructing forward projection matrix, (3) sparse trans-
position for constructing backprojection matrix, and (4) row
partitioning and building corresponding buffer data
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TABLE 1
Computational Complexities
Sequential Trace MemXCT
Memory MN + N> MN/P+N?> MN?/P+ MN/\P
Comput. MN? MN?/P MN?/P + MN/\/P
Comm. N/A N?og P MN/\P ++P

M: # of projections, N: # of channels P: # of processes.

structures. Preprocessing is MPI+OpenMP parallel and is
performed on CPU.

3.5.1 Preserving Data Locality

MemXCT preserves data locality through all matrix manip-
ulations, which is essential for our performance optimiza-
tions. For example, constructing backprojection matrix
requires a sparse matrix transposition of the forward projec-
tion matrix. MemXCT performs this through a scan-based
matrix transposition [23] which preserves data ordering,
rather than an atomic-based transposition which random-
izes data ordering.

3.5.2 lterative Solution

There is a plethora of solution schemes for iterative XCT. To
mention a few, recent work implements SIRT [11],
SGD [17], and ICD [24] iterations. Any of them can be imple-
mented for our proposed memory-centric approach in a
plug-and-play manner with minor modifications. Neverthe-
less, MemXCT implements CG iterations [25], which has a
faster convergence rate than any of them (at a higher per-
iteration cost). It is simply because: (1) a full gradient is
found rather than a partial gradient, (2) optimal step size is
found analytically via an additional forward projection, and
(3) visiting redundant directions is prevented via three-term
recursion. We use a heuristic early termination of iterations
to prevent overfitting, which is practically considered as a
regularization method. Convergence results are shown in
Section 4.1.2.

4 NUMERICAL RESULTS

All experiments in this paper are performed on ALCF Theta
[26], NCSA Blue Waters [27], ALCF Cooley [28], an IBM
Minsky node [29], and an Nvidia DGX-1 node [30]. Table 2
characterizes these machines. The fifth column (B/W) is the
theoretical device memory bandwidth, assuming that ECC
(error correcting code) degrades theoretical bandwidth of
K20X and K80 by 15% [31]. Link describes interface between
host and device.

We used six datasets, as shown in Table 3, in order to
evaluate application performance. The first four are artifi-
cially created for performance evaluation and the latter two
are from real synchrotron experiments at APS. Measure-
ment sinograms are given for a single slice. The artificial
datasets follow parallel raster scan geometry just as the real
datasets. The irregular and regular data footprints, defined
in Section 3.1.1, are given for all datasets in Table 3. The
first/second entry for memory footprints are accessed in
forward /backprojection, respectively. RDS1 involves a
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TABLE 2
Key Features of Machines Used for Experiments
Machine Nodes Accel. Device Mem. B/W Node Mem. Link
Theta 4392 KNL 16 GB MCDRAM 400 GB/s 192 GB 90 GB/s
Blue W. 4228 K20X 6 GB DDR5 121.5GB/s 32GB PCle
Cooley 126 2x K80 12 GB DDR5 204 GB/s 384 GB PCle
Minsky 1 4xP100 16 GB HBM2 720 GB/s 128 GB NVLink
DGX-1 1 8xV100 16 GB HBM2 900 GB/s 512 GB NVLink
TABLE 3 TABLE 5
Dataset Details and Memory Footprints Reconstruction on Various Nodes-Machines

Sinogram Irregular Regular Nodes-Machine Preproc. Speed. Recon. Speed. All Slices
Name (M x N) Sample Data Data 1-Theta (1 KNL) 139s  1x 633s 1x 144d*
ADS1 360x256 Artificial  256/360 KB 215/215 MB 8-Theta (8 KNL) 16.5s 842x 3.33s 19.0x 1.89h
ADS2  750x512 Artificial 1.0/1.5MB 1.8/1.8 GB 8-Cooley (16 K80) 255s b545x 2.89s 219x 1.64h
ADS3 1500x1024  Artificial 4.0/6.0MB  14/14 GB 32-Blue W. (32 K20X) 14.6s 9.52x 1.82s 34.8x 621m
ADS4 2400x%2048 Artificial 16/19MB  90/90 GB 32-Theta (32 KNL) 454s 30.6x 137s 462x 46.8m
RDS1 1501x2048 Shale Rock 16/12MB  56/56 GB 32-Cooley (64 K80) 631s 220x 1.22s 519x 41.6m
RDS2 4501x11283 Mouse Brain 500/198 MB 5.1/5.1 TB

TABLE 4
Comparison With Compute-Centric Approach
Preproc. Reconst. Per-Iter. Speedup
ADS2  Trace N/A 26.05s 579 ms 1x
MemXCT  4.00s 0.53s 11.8ms  49.2x
RDS1  Trace N/A 4253 s 945s 1x
MemXCT  146.3s 62.00 s 1.37 s 6.86 %

shale sample [32] and RDS2 involves a brain sample. RDS1
is available open source [33], and RDS2 is proprietary.

4.1 Evaluating Overall Performance
4.1.1  Comparison With Compute-Centric Approach

We compare our memory-centric MemXCT with compute-
centric Trace [11], an open-source high-performance imple-
mentation that employs SIRT iterations. To enable a one-to-
one comparison, we implement SIRT, and run 45 iterations
with both codes on a single KNL for the ADS2 and RDS1
datasets (see Table 3). Table 4 reports solution times and
corresponding speedups. In the best case, where MemXCT
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memory footprint fits within MCDRAM, it performs each
iteration 49.2 x faster than Trace. In the worst case, where
MemXCT is bounded by slow DRAM bandwidth due to its
large memory footprint, it still performs each iteration
6.86 x faster. Trace memory footprint fits within MCDRAM
in both cases, but it has to perform redundant and ineffi-
cient computation.

Table 4 reports preprocessing overhead of MemXCT.
Although the preprocessing step appears to be a significant
fraction of overall time, when it comes to many-slice recon-
struction, the preprocessing cost is paid only once for the
first slice. It is then reused for all the remaining slices, as
shown in Table 5.

4.1.2 lterative Convergence

MemXCT uses CG for iterative solutions, as discussed in
Section 3.5.2, as opposed to SIRT used by Trace. Fig. 8a
presents convergence properties by comparing L-curves of
CG and SIRT up to 500 iterations: horizontal and vertical
axes represents residual and reconstruction norms, respec-
tively (see Section 2.2 for iterative formulation). As L-curve
suggests, CG solution experiences overfitting soon after 30
iterations where the image does not further improve, but

Trace (45 SIRT Iter.): 425 seconds

(c) (d)

Fig. 8. For RDS1: (a) L-curves for CG and SIRT iterations. (b) Single-slice reconstruction with (c) CG and (d) SIRT iterations.
Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:10:46 UTC from IEEE Xplore. Restrictions apply.
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instead starts to be polluted by noise. Therefore we termi-
nate CG solution after 30 iterations. On the other hand, SIRT
does not converge even with 500 iterations. Fig. 8b shows a
single-slice reconstruction from RDS1, and (c) and (d) com-
pare image details after 30 CG iterations with MemXCT and
45 SIRT iterations with Trace, respectively.

4.1.3 Machine-Specific Considerations

We reconstruct RDS1 on small number of Theta, Cooley,
and Blue Waters nodes. Machines were described briefly
earlier. Unfortunately, reconstruction does not fit within
DGX-1 or on less than eight nodes of Cooley or 32 nodes of
Blue Waters, due to limited memory of their respective
GPUs and the large memory complexity of MemXCT. Nev-
ertheless, reconstruction fits well into a single Theta node
thanks to its large DRAM capacity.

Table 5 reports RDS1 preprocessing and reconstruction
times on various numbers of nodes-machines. Results show
that 32 nodes of all machines enjoy comparable time to solu-
tion: reconstruction of all slices reduces from 1.44 days
down to about or less than an hour. Preprocessing time also
scales well and, in fact, it is insignificant compared to recon-
struction time of all slices. Table 5 also shows the super-lin-
ear speedup property of MemXCT on KNLs: 8-Theta is
19 x faster than 1-Theta. This is a result of shrinking per-
node memory footprint and extra memory bandwidth gain
when it fits within 16 GB MCDRAM capacity. The super-lin-
ear speedup also demonstrates effective domain decompo-
sition and reduced communications described in Section 3.

4.2 Performance Optimizations

This subsection presents single-device performance gains
due to the optimizations described in Section 3. Fig. 9 shows
forward and backprojection performance metrics for ADS1
through ADS4 on KNL and GPU. ADS3 and ADS4 are too
large to fit in a single GPU (see Table 3). Hilbert ordering
and input buffering are applied to the baseline in order
because the first optimization enables the second. Since per-
formance is dependent on both dataset and device, we tune
all results (including the baseline) independently for maxi-
mum GFLOPS as described in Section 4.2.4.

Since there are two FLOPs per non-zero element in the
projection matrix (one multiplication and one addition
per FMA), we calculate the GFLOPS metric as 2Nny/t,
where ¢ is the time measured for a single forward/back-
projection. Similarly, we calculate average memory band-
width utilization for regular data only as Nny x Breg/t,
where Breg is regular data (in bytes) read from memory
per FMA, respectively. L2 miss rates are measured by
Intel VTune profiler. The performance metrics are aggre-
gated over many iterations.

4.2.1 The Baseline

GFLOPS on KNL drops as dataset size increases, regardless
of whether or not it fits into high-bandwidth MCDRAM.
The reason for this behaviour is that the baseline is bounded
by memory latency rather that memory bandwidth, due to
the high L2 miss rates of irregular access. As a result, larger
datasets suffer more performance degradation due to their
higher L2 miss rates, as seen in Fig. 9b. In contrast, GPU
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Fig. 9. KNL performance: (a) GFLOPS, (b) L2 miss rate, and (c) memory
bandwidth utilization. GPU GFLOPS performance: (d) K80, (e) P100,
and (f) V100.

performance improves slightly with larger datasets, as
more parallelism hides the latency.

4.2.2 Pseudo-Hilbert Ordering

provides data locality and reduces the L2 miss rates for all
datasets as seen in Fig. 9b. ADS1 does not benefit from Hil-
bert ordering as much as other datasets due to its small size.
Nevertheless, as opposed to the baseline, the performance
of Hilbert ordering is bounded by memory bandwidth con-
sumed by regular data rather than memory latency. On
KNL, regular data smaller than 16 GBs (ADS1 and ADS2)
fits completely into MCDRAM and performs better whereas
large regular data (ADS3 and ADS4) does not and is
bounded by low DRAM memory bandwidth. On GPUs, the
improvement is less noticeable with larger L2 cache because
irregular data are better cached. As a result, pseudo-Hilbert
ordering speeds up K80, P100, and V100 baselines by about
1.93 x,1.39 x, and 1.03 x , respectively.

This analysis shows that ADS1 and ADS2 use at least
78% and 74% of the theoretical MCDRAM bandwidth,
respectively. The ADS3 regular data (28 GB) is larger than
MCDRAM (16 GB) where it is cached partially. We cannot
say the same for ADS4 because it has too large regular data
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to be significantly cached at MCRAM. As a result, we
deduce that ADS4 uses at least 73% of the theoretical
DRAM bandwidth. These utilizations agree well with
STREAM benchmarks in previous work [34]. Similarly, K80,
P100 and V100 use 78%, 69%, and 92% of their theoretical
HBM bandwidths, respectively. These numbers agree well
with benchmark measurements in previous work [35].

4.2.3 Multi-Stage Buffering

as we described in Section 3.3, comes with an staging over-
head. On KNL, the gain amortizes the overhead when data-
set is large, as seen in ADS2 and up. ADSI1 is not large
enough to show any further performance improvement
with input buffering. The bandwidth utilization for input
buffering in Fig. 9c and Figs. 9d, 9e, and 9f is adjusted with
respect to additional memory-to-buffer mappings as well as
reduced bytes for buffer-address indices.

It is worth to comment that reduced L2 miss rate saves
significant memory bandwidth on K80 since its utilization
due to regular data increases to at least 67% of theoretical
peak as seen in Fig. 9d. The respective utilizations on P100
and V100 drop slightly, if not remain the same, because
their L2 miss rates are already low and bandwidth utiliza-
tions are already high thanks to Hilbert ordering and their
large L2 capacity. As a result, we can deduce that GFLOPS
improvements on P100 and V100 are solely provided by the
bandwidth saving due to reduced number of bytes needed
for addressing shared-memory.

4.2.4 Tuning

The baseline and Hilbert ordering are relatively simple on
both KNL and GPU architectures. We perform an exhaus-
tive search and find out that blocks size of 128 scheduled
dynamically among 128 threads (2 SMT/core) provides
good single KNL performance for ADS1 through ADS4.
Similarly, block size of 32 or 64 provides good single GPU
performance.

For input buffering optimization, parameters should be
re-tuned along with buffer size for effective SMT utilization

2023
TABLE 6
Comparison With MKL and cuSPARSE for ADS2
KNL K80 P100 V100
MKL/cuSPARSE 1x 1x 1x 1x
MemXCT Baseline 1.42x 0.52x 1.39x 1.79%
Pseudo-Hilbert Ordering  4.99x  1.13x  1.93x  1.84x
Multi-Stage Buffering 6.55x  1.56x 223x 211x

on KNL. Figs. 10a, 10b, and 10c shows GFLOPS heat maps
for ADS2 with various block and buffer sizes, and different
numbers of SMT/core. Results show that input buffering
can use more SMTs per core because it finds opportunity to
overlap buffer stagings and accesses among SMTs. The fol-
lowing factors need to be considered when using SMTs in
this way: A larger block size increases the per-block mem-
ory footprint and thus data reuse from the buffer, but also
increases the number of buffer stagings per block, which
comes with an overhead. In that case, it is better to increase
buffer size for limiting the number of stagings. However,
too few stagings decreases the opportunity to overlap buffer
stagings and accesses among SMTs. Also, too large a buffer
size can result in leaks to L2.

On KNL, peak GFLOPS performance for ADS1 and
ADS?2 is achieved with 4 SMT/core and buffer size of 8 KB.
Tuning for ADS3 and ADS4 is cumbersome since they are
severely limited by DRAM bandwidth and SMT effect is not
that apparent. Therefore we use 2 SMT/core, and buffer
size of 16 KB for them. Block size of 128 provides good per-
formance for all datasets.

On GPUs block size of 512 or 1024 and buffer size of
48 KB or 96 KB provides good single-GPU performance
for all GPUs. It is worth to note that addressable shared-
memory size is limited to 48 KB on P100 and K80 and
therefore tuning space is half the size. We follow a simi-
lar tuning strategy for GPUs as explained for KNL, as
seen in Fig. 10d.

4.2.5 Comparison With Existing Libraries

We compare MemXCT forward/backprojection kernel per-
formance with SpMV functions of existing libraries. We use
Intel MKL library on KNL, and Nvidia cuSPARSE library
on GPU. Table 6 reports speedups of our MemXCT baseline
implementation and optimizations compared to CSR (on
KNL) and column-major ELL (on GPU) SpMV of respective
libraries. Evidently, MemXCT baseline implementation is
faster than the existing libraries, with the exception for K80.
This is due to K80 small L2 cache compared to P100 and
V100 GPUs. On P100 and V100, our baseline is 1.39 x and
1.79 x faster since cuSPARSE pads CSR matrix with —1 [36]
which requires extra branches whereas we pad with 0 and
perform redundant multiplication with 0 to avoid thread
divergence on GPUs. Also, cuSPARSE pads CSR on a matrix
level whereas we pad on a thread-block (partition) level,
which saves some of the redundant operations. As a result,
we outperform existing libraries thanks to our application-
specific SpMV optimizations. Nevertheless, both MKL and
cuSPARSE are optimized for general SpMV whereas our
kernels are optimized for XCT application.
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Fig. 11. Weak scaling: (a) ADS3/Theta, (b) ADS2/Blue Waters. Strong scaling: (c) RDS2/Theta, (d) ADS3/Blue Waters.

4.3 Scalability

For presenting scaling of MemXCT on a large number of
nodes, we perform weak and strong scaling experiments on
Theta and Blue Waters. For each experiment, we perform a
full solution with 30 CG iterations, and report total recon-
struction times as well as A4,, C, and R kernel times as they
are defined in Section 3.4. Kernel times involve both for-
ward and backprojection. In order to accurately measure
each individual kernel, we placed the necessary artificial
barriers, though they slightly increase total execution time.
Among the kernels, C' involves inter-node communication
therefore we include its host-device communication times.
For demonstrating scaling, O(v/P) and O(1/P) curves are
included in Fig. 11 as well as the sinogram data dimensions.

4.3.1 Weak Scaling

Each weak scaling experiment is performed by starting
from the reconstruction of a root dataset, and then doubling
the number of channels and projections in a sinogram on
each step. As computational cost increases eight times per
step, the number of nodes is increased eight times accord-
ingly. Figs. 11a and 11b show weak scaling of root datasets
ADS3 and ADS2 on Theta and Blue Waters, respectively.
Both experiments exhibits good weak scaling except com-
munication operations C because of its O(v/P) complexity,
as explained in Table 1. On Blue Waters, weak scaling is
bounded by communication on 512 nodes and up; on Theta,
communication is not the bounding component, but rather
A,. The difference is due to architectural differences across
machines.

4.3.2 Strong Scaling

For strong scaling, we reconstruct RDS2 (brain) and RDS1
(shale) samples on Theta and Blue Waters respectively. We
increase numbers of nodes and the dataset sizes are fixed.
The minimum number of nodes needed for RDS2 and RDS1
to fit well within their respective systems is 128 and 32 nodes
respectively. Reconstructions are scaled up to 4096 nodes of
each system. Figs. 11c and 11d show strong scaling results.
Theta exhibits good scaling up to 2048 nodes where as Blue
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TABLE 7
Comparison of Theta and Blue Waters
RDS1 RDS2 12000x8192
BW 805 ms (128 K20X) 74 s (4096 K20X) 24.4 s (4096 K20X)
Theta 474ms (128 KNL) 10s (2048 KNL) 3.25s (4096 KNL)

Waters scales up to 128 nodes. The main reason (apart from
the difference in network bandwidth and topology) is that
the RDS2 solution is ~91 x more costly than the RDS1, and
therefore the former scales better than the latter. Also, A, ker-
nel exhibits super-linear speedup, demonstrating efficient
domain partitioning and high-bandwidth memory utiliza-
tion, as discussed in Section 4.1.3. RDS2 reconstruction results
are in Fig. 1. In contrast, A, performance saturates on 1024
nodes of Blue Waters (and up) since smaller per-node com-
putation penalizes GPU performance.

4.3.3 Comparison of Theta and Blue Waters Systems

For cross-comparing Theta and Blue Waters systems, we
pick the fastest reconstructions of both RDS datasets and
their corresponding week scaling versions when ran on
4096 nodes. Results are shown in Table 7. RDS1 (shale) sam-
ple reconstruction runs fastest on 128 nodes on both Theta
and Blue Waters. In this case, Theta is about 1.7 x faster
than Blue Waters. RDS2 (brain) sample reconstruction runs
fastest on 2048 nodes of Theta and requires at least 4096
nodes to fits well into Blue Waters. In this case, Theta is
7.4 x faster than Blue Waters. Lastly, Theta is about 7.5 x
faster on reconstructing the 12000 x 8192 dataset.

5 RELATED WORK AND DISCUSSION

Iterative reconstruction algorithms provide superior image
quality considering analytical approaches, however their
usage has so far been limited with their computational
demands [37], [38], [39].

The multicore parallelization of iterative reconstruction
algorithms has long been studied [40], [41], [42], [43]. How-
ever, most prior approaches provide limited scalability and
only consider optimizations in the object domain. Further,
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they suffer from redundant computations when dealing
with large datasets.

With the emergence of high-throughput many-core
architectures and state-of-the-art reconstruction algorithms,
the applicability of iterative techniques has become more
feasible [13], [24], [44], [45]. Especially in medical imaging,
iterative reconstruction approaches have been extensively
used to provide high-quality 3D reconstructions [46], [47],
[48] in order to limit patient radiation exposure [4], [49].
Most of these approaches rely on GPUs to meet computa-
tional requirements of these algorithms [50], [51], [52].
Although GPUs can provide sufficient computational
throughput, their limited memory can accommodate only
small- to medium-scale datasets. For large-scale dataset
host-device communication is known to be dominating
overhead in GPUs [53]. Further, most of these approaches
rely on on-the-fly computation of ray tracing, ie.,
CompCXT type of data access pattern, which shows subop-
timal performance compared to MemCXT.

Li et al. developed cuMBIR [17], a framework for model-
based iterative reconstruction on GPUs. They implement
two solvers ICD and SGD, and propose several optimiza-
tions including unified thread mapping. Their method is
also based on on-the-fly computation of A matrix, and per-
forms redundant computations. Further, their solution
focuses on small to medium scale datasets that can fit into
single node GPUs. In comparison, MemCXT is optimized
for very large tomographic datasets that require not only
single node performance but also efficient large-scale
execution.

Wang et al. [44] use KNL many-core capabilities to recon-
struct 1024? tomograms (or 1024% 3D volumes). They intro-
duce the non-uniform parallel super-voxel to exploit sinusoidal
bands in sinograms and optimize data access patterns. Our
approach shares similarities with their work, but we con-
sider parallelization and performance optimizations in both
the tomogram and sinogram domains. Moreover, we fur-
ther improve data access patterns and communication using
two-level pseudo Hilbert ordering and multi-stage input
buffering on both domains. Our evaluation also extends to
extremely large objects (11293 rather than 1024?), showing
the usability of our approach for very large datasets.

In a more recent work by our group, we further extended
the optimizations proposed in this paper and improved the
reconstruction performance with high-end GPU clusters [54].
Specifically, we applied hierarchical communications and
reductions to minimize inter-node communication over-
head, improved the memory access performance with 3D
batch parallelism, and used mixed-precision types to maxi-
mize throughput and bandwidth utilization. These optimi-
zations enabled reconstruction throughput to reach 34% of
Summit’s peak performance (or 65 PFLOPS).

The two-level pseudo Hilbert ordering technique used in
this work is a form of space-filling curves. To our knowl-
edge, the first space-filling curve example was presented by
Peano in 1890 [55]. Later, space-filling curves have been suc-
cessfully applied to improve performance of many applica-
tions [56], [57], [58], [59], [60], [61], [62]. In [63], Mellor-
Crummey et al. showed that data and computation reorder-
ing based on space-filling curves can improve the perfor-

mance of irregular agplications significantly. Moon et al.
Authorized license
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analyzed clustering properties of Hilbert space-filling
curve [64] on different query shapes [65]. Reissmann et al.
showed the effects of Hilbert and Morton curves[66] on
energy and locality [62]. In our work, we applied two-level
pseudo Hilbert ordering to optimize the performance of
tomographic reconstruction data access patterns and inter-
process communication.

6 REPRODUCIBILITY

Reproducibility of experimental results is essential to scien-
tific research. To promote the reproducibility of experimen-
tal results in the HPC research community, the SC Student
Cluster Reproducibility Committee has, since 2016, selected
one of the papers from the past year’s SC conference to
serve as the benchmark for the Reproducibility Chal-
lenge [67]. Based on our paper’s artifact descriptor and its
suitability to the SCC, we were deeply honored that our
SC19 paper [1] was selected to serve as the 2020 Reproduc-
ibility Challenge benchmark.'" Nineteen teams, each of
which is composed of six college students and their advisor
who design, construct and utilize their own clusters to run
computational experiments, were selected to participate
SCC at SC20 and were tasked to replicate the findings of the
publication.?

This section describes the pertinent features of the
MemXCT codebase and collateral materials for the Repro-
ducibility Challenge. Some of these features were already in
our repository so that future papers can reproduce our
results for comparison purposes. Some were added and/or
enhanced in consultation with the Student Cluster Repro-
ducibility Committee. We summarize the key findings of the
nine top-scored teams and present the insights that can be
potentially applicable to other HPC research experiments.

6.1 Datasets Used for Reproducibility

To support the reproducibility and for benchmarking, we
provide Test Datasets and Challenge Datasets to the partici-
pating teams.

6.1.1 Test Datasets

The Test datasets are released two weeks in advance to the
SCC kickoff. This allowed students to: 1) Compile and run
the codes, 2) Verification by visualizing the results, and 3)
Tuning system performance according to the teams’ respec-
tive hardware. The Test datasets comprise ADS1, ADS2,
ADS3, and ADS4, the artificial portion of the benchmark set
that were used to generate the results presented in this
paper. These benchmark datasets were chosen to represent
very different points in the four dimensions (columns)
shown in Table 3.

A major constraint in MemXCT is the memory footprint,
which grows with respect to the memory complexity as for-
mulated in Table 1. For example, ADS1 and ADS2 are small
enough to fit into a single GPU whereas ADS3 and ADS4

1. Please see the blog post entitled “SC20 Student Cluster Reproduc-
ibility Committee Chooses Benchmark Wisely” by Scott Michael and
Stephen Harrell for details.

2. Please see the blog post entitled “Global Lineup Will Compete at
SC’s First Virtual Student Cluster Competition” by Christine Baissac-
Hayden for details.
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Fig. 12. (a)—(d) Artificial Test Datasets are used for performance benchmarks for the original paper and at the reproducibility challenge. (e)—(g) Real

Challenge Datasets that are introduced for additional reproduction.

TABLE 8
Challenge Datasets Used for Reproducibility
Sinogram Irregular Regular
Name (M x N) Sample Data Data
CDs1 750512 ShaleRock 1.0/1.5MB 1.8/1.8 GB
CDS2  375x1024  Shale Rock 4.0/1.5MB 3.5/3.5GB
CDS3 1501x2048 ShaleRock 16/12MB  56/56 GB

are larger. Therefore, ADS3 and ADS4 datasets are easier to
accommodate in KNL nodes. Providing the exactly same
benchmark datasets used in our original experiments gives
students the opportunity to directly compare their perfor-
mance results to those in the original paper.

For verification, we asked students to visualize their
input (sinogram) and output (tomogram) datasets by using
the Fiji software [68], although, students are free to use any
other visualization tool. They import the raw output image
files and inspect these to verify the execution of their code.
The input (sinogram) and output (tomogram) Test Datasets
are shown in Figs. 12a, 12b, 12¢, and 12d.

6.1.2 Challenge Datasets

We revealed the Challenge Datasets by the time of the
SCC. These datasets comprise CDS1, CDS2, and CDS3 of
different dimensions and are listed in Table 8 along with
their memory footprints. We generated these datasets by
rescaling the sinogram of RDS1 in Table 3. Each scaling
was applied to a different slice of the original 3D dataset
and the output tomograms were not revealed to the stu-
dents. We matched the dimensions of CDS1 and CDS3
with those of ADS2 and RDS], respectively, to provide stu-
dents a one-to-one benchmarking opportunity. We chose
dimension of CDS2 large enough to require substantial
computational throughput but small enough to still fit into
a single GPU memory. The sinogram and tomogram of the
Challenge Datasets are shown in Figs. 12e, 12f, and 12g.
All datasets were provided through the repositories as
explained in the next subsection.

6.2 Codebases and Repositories

The CPU and GPU codebases that were used for performing
benchmarks in this paper and for the SCC reproducibility
challenge were provided in respective GitHub repositories:

https://github.com/merthidayetoglu/MemXCT-

CPU
https://github.com/merthidayetoglu/MemXCT-

GPU

The MemXCT application requires MPI and C++ com-

piler (and CUDA compiler for GPU). Instructions for com-
piling, job execution, and preparing input file were
provided to the participant teams. The repositories include
persistent links to the Testing Datasets ADS1, ADS2, ADS3,
and ADS4 and Challenge Datasets CDS1, CDS2, and CDS3.
We also included the visualizations of the Test Datasets in
the repository, for student teams to verify their results
against any bugs.

6.3 Machines Used for Reproducibility

In a typical year, each of the SCC teams designs and assem-
bles their own cluster on the SC show floor. This often
results in a very diverse set of hardware and software con-
figurations. However, due to the COVID-19 pandemic, the
SC20 SCC was completely virtual. Student teams utilized
virtual machines provided by Microsoft Azure cloud ser-
vice. Although, the students had access to a wide variety of
Azure instances, some of the more exotic hardware configu-
rations that had been seen in the past with the physical com-
petition were not available. Details of the virtual machine
configurations and the teams that utilized them are shown
in Table 9. Each team configured their own software envi-
ronment, including OS, drivers, compilers, and MPI imple-
mentations. The details of the software configurations can
be found in teams’ critiques in the special issue herein.

6.4 Reproducibility Results
For reproducibility, we turned on all MemXCT optimiza-
tions on, i.e., pseudo-Hilbert ordering and multi-stage buff-

ering, and asked students to first replicate the computational
throughput (in GFLOPS) and bandwidth utilization (in GB/
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TABLE 9
Machines on Azure Used for Reproducibility

Machine CPU Cores GPU Interconnect Team(s)

NC24r Promo Intel Xeon E5-2690 v3 2x12 4 x NVIDIA K80 N/A Tsinghua University

NC24rs v2 Intel Xeon E5-2690 v4 2x12 4 xNVIDIAP100 ConnectX-3 ETH Ziirich, Peking University,
ShanghaiTech University, Tsinghua
University

NC12s v2 Intel Xeon E5-2690v4 1x12 2 x NVIDIA P100 N/A Clemson, University of Texas

NC24rs v3 Intel Xeon E5-2690 v4 2x12 4xNVIDIA V100 ConnectX-3 Nanyang Technological University, ETH
Zirich, Georgia Institute of Technology,
University of California San Diego,
Tsinghua University

HC44rs Intel Platinum 8168 2 x 21 N/A ConnectX-6  ETH Ziirich, University of Texas, Peking
University

Fl6s v2 AMD EPYC 7551 1x32 N/A ConnectX-4  Tsinghua University

HB60rs AMD EPYC 7551 2x32 N/A ConnectX-5 Nanyang Technological University,
Tsinghua University

HB120rs v2 AMD EPYC 7V12 2x60 N/A ConnectX-6  ETH Ziirich, Georgia Institute of

Technology, University of California San
Diego, ShanghaiTech University, Tsinghua
University

s) in Fig. 9 on a single CPU and single GPU. Then, we asked
students to observe strong scaling from single node to four
nodes.

6.4.1 Single-CPU Results

From sampling the student reports, we see that one of the
challenges in reproducing the results is the resource utiliza-
tion in the cloud that inherently includes virtualization
overhead. Further, the cloud resources are much more lim-
ited, both in terms of computational throughput and band-
width, compared to the (dedicated) high-end resources
used in the original experiments. Nevertheless, the students
seem to be able to verify that the application is indeed mem-
ory bound and the execution time is roughly proportional to
the memory bandwidth. The top teams report that
MemXCT can achieve high CPU utilization even though it
is memory-bound, an important conclusion of the original
experiments.

6.4.2 Single-GPU Results

In Fig. 13, we compare the top teams’ results against the
ones reported in the original paper. Since the teams didn’t
have access to KNL resources, we only show the GPU
results. Specifically, the teams had access to the same

Compute Throughput
300
Original Paper
250 eina’ e
v 200
o Original Paper
S 150
s
© 100
50 Original Paper I |
o I |
CDS1 CDS2 CDs1 CDs2 CDS1 CDS2
K80 P100 V100
W PekingU ® Tsinghua ShanghaiTech

generations of GPUs, i.e., K80, P100, and V100, which were
used in the original paper. Because of the limited cloud bud-
get given to participating teams, not all teams reproduced
results on all generations of GPUs except Tsinghua (the
overall winner) and Clemson. Nevertheless, the top teams
were able to reproduce the compute throughput and mem-
ory bandwidth results within the normal variation of exper-
imental results with their available GPUs. This does not
only confirm the integrity of the original measurements but
also the stability of GPU execution speed in different
deployment environments, i.e., supercomputers versus
cloud clusters.

6.4.3 Scaling Results

As for scaling, since the teams didn’t have access to large-
scale supercomputers, such as Theta or Blue Waters, they
scaled MemXCT only up to 4 nodes on the Azure cloud.
Still, the majority of the teams seemed to reproduce strong-
scaling results with the small number of nodes, and pre-
sented a similar trend shown in Fig. 11d. Since cloud resour-
ces provide weaker network resources compared to
supercomputers, it was interesting to see that the scaling
trends still hold. This suggests that the MemXCT applica-
tion can be used in a modest-sized cloud computing cluster
and still achieve desired scaling behavior.
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Fig. 13. Reproduction of GPU throughput (in GFLOPS) and bandwidth utilization (in GB/s) through CDS1 (equivalent to ADS2) and CDS2 datasets.
The reproduced benchmarkings on three generations of GPUs highly matches with the original results presented in Fig. 9c.
Authorized licensed use limited to: Stanford University. Downloaded on August 28,2024 at 06:10:46 UTC from IEEE Xplore. Restrictions apply.



2028

A specific performance trend that was not reproduced is
the super-linear strong scaling as in Fig. 11c because it is
specific to KNL architecture. That is, MemXCT performance
is bounded by memory bandwidth and strong scaling have
super-linear speedup property because when each partition
fits into the 16-GB high-bandwidth MCDRAM on KNL, we
observe an extra speedup. However, CPUs and GPUs that
were available in the Azure cloud did not have high-band-
width memory that would cache each partition, and there-
fore student teams could not report any super-linear strong
scaling.

6.5 Further Insights on Reproducibility

In this section, we discuss a few challenges on different
aspects of reproducibility of MemXCT and other applica-
tions in general.

6.5.1 Veffication

Each application may require a different reproducibility
approach. This mainly comes from the nature of the applica-
tion, rather than the underlying computational workload. In
MemXCT case, for example, the application reconstructs
images, so the output is already visual and hence easy to
verify by just looking at the screen, in a very specific way
for MemXCT. The computational workload of the image
reconstruction, however, is exactly the same as of any other
iterative solution of a sparse linear system. Except, the tech-
nique proposed in this paper is highly optimized for the
governing X-ray imaging problem. For verification, we ini-
tially thought about defining a distance metric between two
images (or using an already-defined metric). However, a
single number hardly provides any insight to the students
about the correctness of the MemXCT system. Hence, we
asked students to observe the iterative convergence of the
result and visually verify its correctness by comparing it
with the provided ground truth.

6.5.2 System Variations and Scaling

An important challenge experienced by the SCC teams was
to reproduce the results when the systems used by the
teams are different from the ones used for the original
experiments. Hardware variations are obvious. The teams
were not able to match the numerical execution speed and
memory bandwidth results for CPUs simply because the
hardware they used were much weaker than the CPUs used
in the original experiments. However, they were able to
reproduce similar ratios and trends. In contrast, when the
teams used one or more of the GPUs in the original experi-
ments, their results matched closely. A more subtle problem
is software variations. Different OS, library versions, and
virtualization schemes can affect the achievable execution
speed in a significant way.

In the area of scaling, we have scaled the MemXCT appli-
cation up to 4096 nodes of Blue Waters and Theta. The scale
of these systems (described in Table 2) are not available for
reproducibility as mentioned before, and the teams
attempted to reproduce scaling trends only with 4 nodes
(low-node-count regions of Fig. 11.) The MemXCT applica-
tion reports the times spent for partial matrix multiplication,
communication, and reduction shown as A, C, and R,
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respectively, in Fig. 11. Times required for these operations
show different properties when the number of nodes is
increased. For example, while computation (4,) efficiently
scales with an increasing number of nodes, communication
(C) does not. Most of the teams are able to explain these per-
formance properties. Several teams were able to observe the
same strong-scaling trend in spite of the weaker networks
in the cloud environment. This is likely due to the fact that
in these low-node-count settings, the amount of work
assigned to each node is still sufficient to hide the communi-
cation overhead in spite of the weaker networks in the cloud
environment.

6.5.3 Benchmarking Across Systems

Comparing performance across systems, e.g., CPU and
GPU, is another challenge for benchmarking and reproduc-
ibility. First, the fundamental differences of CPU and GPU
architecture make them incomparable. That is, GPUs are
extremely good when applications show data parallelism.
For example, students report up to 10 x speedup of a single
GPU over a single CPU. The reported KNL performance in
this paper, however, has a comparable performance with
GPUs, as shown in Fig. 9. Second, CPUs have much more
memory on the host compared to the device memory on
GPU. This sometimes prevents one-to-one comparison
because a large benchmark does not fit into a single GPU.
We solve this problem by benchmarking over four artificial
datasets with various sizes, among which ADS1 and ADS2
fit into device memories of both GPU and KNL. Lastly, since
GPUs (and other accelerators) have smaller device memory,
strong scaling on the whole system may not be feasible
when starting from a single device. Mainly because the sin-
gle-device workload is extremely small when scaled to
thousands of devices. That's why we use a large RDS2
benchmark (with 10.2 TB memory footprint) on 128 KNLs
as the starting point for strong scaling on Theta. Similarly,
we use a smaller RDS1 benchmark (112 GB memory foot-
print) on 32 K20x as the starting point for strong scaling on
Blue Waters. In both cases, we scale up to 4096 nodes of
both systems, as shown in Figs. 11c and 11d. The figure
clearly contrasts two systems by their super-linear and sub-
linear scaling properties.

In general, we can obviously not expect the teams to
reproduce the same performance results when they use dif-
ferent hardware/software systems. However, we did expect
that their results show similar characteristics and trends to
the original paper. In this respect, the top teams were
indeed able to observe the desired application performance
behavior in their test systems. This gives us confidence that
future users of MemXCT will experience these desired per-
formance behavior in their own systems.

7 CONCLUSION

We have described a memory-centric approach to iterative
XCT reconstruction. Our implementation, MemXCT, per-
forms forward projection and backprojection operations as
explicit SpMVs with no on-the-fly (redundant) computa-
tions or race conditions; these features allow MemXCT to
achieve up to 50 x speedup over a high-performance com-
pute-centric approach. Although MemXCT has a high
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memory complexity, its per-node memory footprint
decreases linearly with increasing number of nodes, which
favors large-scale resources. For solving the performance
bottlenecks, we propose and implement two-level pseudo-
Hilbert ordering and multi-stage input buffering techniques
in MemXCT. We compare the performance of our computa-
tional kernels on KNL and several generations of GPUs,
and demonstrate scaling up to 4096 nodes using ALCF
Theta (KNL) and NCSA Blue Waters (GPU) systems. We
show that MemXCT reconstructs a large-scale (11K x 11K)
mouse brain tomogram in 10 seconds using 4096 KNL
nodes. Our experimental results were reproduced success-
fully by the 2020 Student Cluster Competition teams. We
present the pertinent features of the MemXCT artifact and
collateral materials that enabled teams to verify their results
and compare against our results within a strict time limit.
Even though the reproducibility approach we take is spe-
cific to MemXCT, similar reproducibility design can be
adopted by future HPC research artifacts to allow other
researchers to reproduce the reported experimental results.
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