Optimizing Tiled Sparse Matrix Multiplication with
Performance Modeling on GPUs

Anonymous Author(s)

Abstract

Sparse matrix - dense matrix multiplication (SpMM) is one
of the fundamental computational kernels widely used in
scientific computing, artificial intelligence, and graph analyt-
ics applications. The SpMM throughput is typically bound
by memory bandwidth and can potentially benefit from the
high memory bandwidth of modern GPUs. However, load im-
balance and poor data reuse across threads can significantly
impact the SpMM throughput on GPUs. For guidance on al-
gorithmic optimizations for improved load balance and data
reuse, such as loop reordering and tiling, one needs reliable
analytical performance modeling of SpMMs on GPUs. Nev-
ertheless, it is not trivial to predict the SpMM throughput on
GPUs due to the unstructured nature of its memory accesses
and the high complexity of memory hierarchy on GPUs. In
this work, we develop a simple yet reliable performance
model based on the arithmetic intensity of SpMM kernels
with advanced tiling strategies. The proposed intensity equa-
tion considers register- and scratchpad-tiling strategies and
captures the performance implications of (1) the sparsity
pattern of memory accesses and (2) memory and the proces-
sor architecture of GPUs with high fidelity. We benchmark
the proposed model with 200 cases on NVIDIA A100 GPUs
to assess the accuracy of the largest sparse matrices in the
open-source SuiteSparse matrix collection. With the guid-
ance of the performance model, we apply load balancing
and row reordering optimizations to predictably improve the
SpMM tiling performance. As a result, we obtain 19.2X av-
erage speedup over state-of-the-art cuSPARSE SpMM with
2.03x geometrical mean speedup. For reproducibility, we
open source Tiled SpMM repository.!

Keywords: GPU Computing, Sparse Matrix Multiplication
(SpMM), Performance Modeling

1 Introduction

Sparse matrix-dense matrix multiplication (SpMM) is a fun-
damental computational kernel widely used in many scien-
tific [15], artificial intelligence [11, 16, 19], and data analytics
applications [19]. More than often, SpMM takes a significant
portion of the end-to-end execution time [14]. SpMM kernels
with high sparsity levels have low arithmetic intensity, and
hence its throughput is bounded by the memory bandwidth

I The link will be published upon acceptance of this paper.

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada
2023.

of the running processor [23]. Therefore, graphics process-
ing units (GPUs) are used as a preferred accelerators for
computing SpMM due to their high memory bandwidths. To
further improve the performance and exploit the modern
GPU hardware features, prior work has proposed optimiz-
ing SpMM for GPUs using varied techniques such as loop
transformation [23], tiling [18], and kernel fusion [29]. These
techniques enable the algorithm to improve the on-chip data
reuse by efficiently exploiting the use of registers and scratch-
pad memory on modern GPUs [11, 16, 18].

Among these optimizations, optimizing SpMM through
tiling is popular and critical [38]. This work focuses on a
specific strategy that stages irregular memory accesses on
the scratchpad memory and accumulates the result on reg-
isters [14, 16, 18]. Moreover, previous implementations are
usually optimized for the row-major storage of dense ma-
trices [18] or implemented for specific applications [14, 16],
while this work applies the state-of-the-art SpMM tiling to
column-major dense matrices to support a wide variety of
new applications based on sparse matrix-multiple vector
multiplication. This implementation is referred to as Tiled
SpMM in this work.

Analytical performance modeling of an algorithm is cru-
cial for providing decision support for high-performance
optimizations. Examples include but not limited to: kernel
selection for high-performance libraries [2], tuning guid-
ance for specific architectures [9], and hardware/software
co-design [4, 42, 43]. Nevertheless, it is non-trivial to de-
velop a model that is portable to various processor architec-
tures and applicable to varied applications while providing
sufficient fidelity to capture performance implications. Yet
another challenge is that the algorithm exhibits irregular
memory access behavior and the memory access locality
characteristics are input dependent. Therefore, the perfor-
mance of a given SpMM implementation on a given system
can vary significantly. This makes creation of high fidelity
performance model for SpMM on GPU a very challenging
task as it directly depends on the input sparsity of the sparse
matrix.

Performance modeling using arithmetic intensity has been
studied on CPUs [12]. Nevertheless, it does not consider
caching mechanisms that can significantly affect perfor-
mance. Model-driven optimization approaches on GPUs have
been studied in the sparse matrix - dense vector multipli-
cation (SpMV) context [9]. However, it does not take the

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

recently developed register- and scratchpad-tiling optimiza-

tions for GPUs [16, 18]. Furthermore, previous work does not

include input-dependent sparsity pattern into the equation.

Within this context, this work presents a novel high-fidelity
performance analytic model for accurate prediction of the
Tiled SpMM throughput. This analytical model is built on
the Roofline model [37] that characterizes an algorithm as ei-
ther compute-bound or bandwidth-bound, depending on its
arithmetic intensity, (i.e., compute-to-memory-access ratio).
The proposed model predicts the arithmetic intensity by in-
specting the sparsity pattern of the involved matrices. More
specifically, this model considers (1) architectural parameters
(e.g., memory bandwidth, floating-point precision, memory
access granularity) at compile time and (2) data-dependent
parameters (sparsity level, sparsity pattern) at run time.

Moreover, based on the new performance model, this work
presents two model-driven optimizations for Tiled SpMM:
The first optimization targets the cases whose measured per-
formance falls short of the model prediction, and employs a
load balancing mechanism to improve the computation per-
formance. The proposed model is particularly used for tuning
the optimization parameters for detection and segmenta-
tion of imbalanced sparse matrices. The second optimization
targets the cases whose measured memory throughput is
significantly below the model prediction, and leverages row-
reordering to improve the data locality of the sparse matrix in
Tiled SpMM. In this case, the proposed model is used to guide
row reordering decisions. With the proposed model-driven
optimizations, the optimized Tiled SpMM attains the perfor-
mance bound predicted by the proposed analytic model. Our
optimization workflow is summarized in Fig. 1.

In summary, this work makes the following contributions:
e It analyzes the SpMM operations on GPUs and provides

insights into the causes of performance variations.

o It proposes a novel performance analytic model for Tiled
SpMM on GPUs.

e With the guidance of the performance model, it detects
underperforming cases and applies additional load bal-
ancing and row reordering mechanisms for improving
performance.

e For assessing the accuracy, it benchmarks the Tiled SpMM
and the proposed optimizations with the performance
model over 200 application cases on A100 GPU.

Our evaluation results show that: 1) our proposed ana-
lytic performance model is reliable; 2) with model-guided
optimizations (load-balancing and row-reordering), the opti-
mized Tiled SpMM provides 6.37x average speedup over the
baseline Tiled SpMM, and an overall 2X geo-mean speedup
over the SpMM algorithm of Nvidia cuSPARSE library. This
work provides a deep understanding of performance param-
eters for further optimization of sparse algorithms. The pro-
posed performance analytic model (of Tiled SpMM) is also
portable over the next generation GPUs and a wide-variety
of application cases. For reproducibility of this work, we will

Anon.

Roofline Plot

e A100
50,000
19.5 TFLOPS
4 DGEMM
G 10,000 Compute-bound
[= %
o
z %\\&\ Tiled SpMM
= ?\P&b *Optimized
2 \0 Bandwidth-bound
< 6‘6\5 A 2: Row Reordering
2 1,000 ° i
8 » Intermediate
= Bandwidth-Bound
=

M Tiled SpMM Baseline

ANaive SpMM Underperforming

100 Bandwidth-bound

0.1 1 10 50
0.17 Arithmetic Intensity (FLOPs/Byte) 12.54

Figure 1. Representation of the proposed optimizations on the
roofline plot. SpMM tiling improves the arithmetic intensity, never-
theless, the performance may not attain maximum potential per-
formance. We use the proposed Tiled SpMM model as a guidance
to further pre-process the input matrix for optimization.

open-source our codebase upon acceptance of this manu-
script.

2 Background

This section introduces the SpMM operation and a baseline
implementation, discusses the Roofline model and modeling
of the baseline SpMM, and proposes a simplified abstract ma-
chine for modeling the Tiled SpMM performance on modern
GPU architectures.

2.1 SpMM

SpMM multiplies an M XN sparse matrix A by an NxK dense
matrix B and finds an M X K dense matrix C as the output.
Without loss of generality, we assume that the sparse matrix
is given in CSR format and the dense matrices are stored in
column-major format. We choose the column-major format
for the dense matrices due to our target applications [14, 16].
Those applications store dense matrices natively as multiple
column vectors and multiplies each dense vector with the
sparse matrix, i.e., sparse matrix-multiple vector multiplica-
tion. Furthermore, we do not assume any particular sparsity
pattern for the sparse matrix for generality.

Figure 2 depicts the memory accesses of the baseline
SpMM implementation on GPU [33]. Each output element
of C is computed by a single thread, and therefore, a total
of M X K threads are put on work. To compute the output
element (m, k), the corresponding thread performs an in-
ner product of the mth row of A and the kth column of
B. Since the row is sparse, each thread multiplies and adds
0 < u < N nonzeroes on average, where 1 is the mean num-
ber of nonzeroes that are distributed among M rows. In this
example, there are two nonzeroes on the mth row, the thread
(m, k) reads two nonzeroes of A and reads the matching two

Model-Driven Optimization of Tiled SpMM

A (MxN) B (N x K) C (M x K)
Sparse
Read A
Write Write C
m X X —]
| x = (m,k)
-
Read A/Read B
Dense
Sparse Memory Access Dense
k

Figure 2. In the massively-parallel baseline SpMM, one thread com-
putes a single output (m, k) by performing a sparse inner product
of the mth row of A and the kth column of B.

elements of B. Then, the thread writes the result of the inner
product to C.

The memory accesses to B are sparse, and are costlier than
writing to C because of the overhead of the memory sub-
system for serving sparse memory accesses. We will model
that cost in Section 3. But first, we will present the roofline
model in the next subsection to understand the performance
implications of memory accesses and communications.

2.2 The Roofline Model: A Pedestrian Description

The roofline model [37] helps finding theoretical limitations
of how fast an algorithm runs on a processor. According to
the Roofline model, the operating regime of an algorithm
depends on its arithmetic intensity:

_ 2. Floating-Point Operations (GFLOPS)
B >, Memory Accesses (GB/s)

in the unit of floating-point operations (FLOPs) per byte. In
other words, I is a measure of the number of FLOPs per-
formed for every byte brought from the memory.

When the compute throughput is measured in a system of
interest (in FLOPs per second, i.e., FLOPS), we can place an
algorithm in the roofline plot for that system. As an example,
Figure 1 shows a roofline plot with the arithmetic intensity
on the x axis and the compute throughput on the y axis. The
light blue horizontal and skewed lines are determined by
the peak compute throughput and peak memory bandwidth
of Nvidia A100 GPU, respectively [1]. Note that these peak
values are theoretical (calculated by the clock rate, number
of channels, number of ALUs, etc.) and an execution may
not be able to reach the peak values in practice.

The critical intensity of a processor is defined as the ra-
tio of the peak compute throughput and the peak memory
bandwidth (12.54 in the A100 case) that depends on the pro-
cessor’s theoretical limits. As an example, tiled dense general
matrix multiplication (DGEMM) algorithm is placed in Fig-
ure 1 as a compute-bound algorithm [35]. On the other hand,
SpMM has an arithmetic intensity less than 12.54 FLOPs/byte
and hence it is bounded by the memory bandwidth [12]. Al-
gorithms that do not saturate either the memory-bandwidth

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

1 for (int k = 0; k < K; k++)

2 for (int m =0; m < M; m_H_)}MxKThreads

3 { Each Thread
4 float acc = 0;

5 for (int 1 = rowPtrim]; 1 < rowPtrlm + 1]1; 1++)
6 {

7 int idx = index[1]; }ReadA

8 putimes float val = valuelll;

9 acc += Blidx] [k] * val;— Fused Multiply-Add
10 } Read B (FMA): 2 FLOPs

11 CIm] [k] = acc;

12 } Write C

Figure 3. The naive SpMM implementation. For massive paralleliza-
tion, the outer loops are mapped to M X K threads and each thread
executes the highlighted section involving FLOPs and memory
accesses.

or the compute bound are identified as latency-bound (under-
performed), as depicted in the figure. One prominent reason
is the load imbalance between processing elements. We fix
the load imbalance problem of Tiled SpMM in Section 4.

2.3 The Naive SpMM Model

We can place the naive SpMM at the corner of the roofline
plot in the Fig. 1. Because, the single-precision (FP32) arith-
metic intensity of the naive SpMM is in the range of 0.08—0.17
FLOPs/byte, and hence memory bandwidth bound is in the
range of

130 GFLOPS < If < 260 GFLOPS

according to the roofline model, where I is the intensity
defined in Eq. 1 and f = 1, 555 is the memory bandwidth of
A100.

To derive the arithmetic intensity model of the naive
SpMM, we need to look at the implementation code, and
simply count the number of FLOPS and the memory ac-
cesses in bytes that each thread performs. To elaborate, the
naive SpMM code with CSR data structure [7] is shown in
Figure 3. The sector of code that is executed by each thread
is highlighted in with gray, which corresponds to an inner
product depicted in Fig. 2. We count the number of FLOPs
first: Each thread performs y fused multiply-adds in line 9,
which are counted as 2y FLOPs and placed in the numera-
tor of Eq. 2. We count the number of bytes to place in the
nominator of Eq. 2 as follows.

First, in the 5th line, each thread reads the offsets for the
first and last nonzeroes of the mth row from the CSR data
structure rowPtr. The offsets are typically eight bytes, which
is symbolized as § in Eq. 2. Next, each thread reads p elements
of the index and value arrays, which are symbolized with
By and By in Eq. 2, respectively. As a result, each thread reads
u(Br+By) bytes on average, where Br is the number of bytes
per value, and By is the number of bytes per index value.
Typically, By is four bytes for integer and Br is either two,
four, or eight bytes, for half-, single-, or double-precision

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

floating point numbers, respectively. Then, according to the
indices read from the index array, each thread reads p el-
ements from the corresponding kth column of B in Line
9, which adds pBr bytes in the denominator. Finally, each
thread write Br bytes to C in Line 11 in Fig. 3, which adds
Br bytes to the denominator of Eq. 2. As a result, we can
write the intensity formula as

2
I= K .
/J(BT+B[)+ﬂBT+BT+5

@)

The results of the inner product are accumulated in a register,
named with acc in Line 9 of Fig. 3, and we do not count reads
and writes to register.

From the naive SpMM intensity model (Eq. 2, one observa-
tion we can make is that the intensity depends on y, which
can also be seen as the density of the sparse matrix: The
higher the density, the higher the intensity because the nom-
inal effect of reading the metadata and writing the output per
thread becomes insignificant as p > Br + §. Therefore we
can find the range of arithmetic intensity as 0.08 < I < 0.17.
As a result, the upper-bound of the performance model sug-
gests that the naive SpMM can utilize at most 260 FLOPS,
i.e., 1.33%—a tiny fraction of the peak FP32 throughput of
the A100 GPU.

2.4 Rules of the Game: The Abstract Machine Model

This section lists the baseline assumptions that we make for
modeling the arithmetic intensity of Tiled SpMM in a GPU
system. As the real GPU memory systems are very complex,
a practical model should only consider the most pertinent
features and characteristics. In other words, we simplify the
complex GPU memory systems into an Abstract Machine
with only a small number of features that are considered on
our performance model. In other words, our model would be
exact on the abstract machine with the following features:

1. All threads run in parallel with no arithmetic latency.

2. All threads run in parallel with no memory latency.
That is, there are sufficient parallel memory instructions
on-the-fly at any given time for saturating the memory
bandwidth. When the sparse matrix is imbalanced, this
assumption is violated and the Tiled SpMM does not satu-
rate the memory bandwidth.

3. All matrices fit into the main memory (DRAM) of the GPU,
i.e., the abstract machine has infinite memory.

4. On-chip memory accesses, i.e., to registers and L1/L2
caches, incur negligible cost and thus are not counted.

5. Bytes transferred with each DRAM access are counted.

6. Threads with consecutive indices are group of as warps.
Each warp executes instruction in a lock-step, i.e., single
instruction multiple threads (SIMT) manner [31].

7. DRAM access granularity is equal to a cache line size.
That is, whenever a piece of data is needed from the GPU
memory, the entire cache line that contains that piece
of data will be accessed from the GPU memory. In fact,

Anon.

Table 1. Reference Table for Arithmetic Intensity Model in Eq. 3.

Parameter
Br = 4 (bytes)

Explanation

Bytes per floating-point number
Bjs = 2 (bytes) # Bytes for indexing SRAM

By = 4 (bytes) # Bytes for indexing DRAM

B =1,555(GB/s) DRAM bandwidth in GB/s

1<p<M SRAM data reuse (input dependent)
0<p<N Average nnz per row (input dependent)
1<R Register tiling factor

0 < S (bytes) # Bytes of metadata per thread

N/nnz <T Sparse access cost (Eq. 4)

1<Z7 S-ELL zero-padding overhead

caching to L2 has a sector granularity, and we treat two
sectors (64 byte) as a single cache line.

8. Writes to the output matrix are counted twice. The write
request cannot find the data in the cache, and therefore a
read instruction has to be issued. Therefore writing the
output requires two memory transactions.

These features are used in the derivation of the mathemat-
ical terms of the performance model expressions.

2.5 Overview of the Tiled SpMM Baseline

Tiled SpMM re-implements the tiling strategy that are de-
scribed by Hong, et al. [18], and Hidayetoglu, et al. [16]. But
previous from previous work, our implementation is opti-
mized for the column-major storage of B and C. In this sec-
tion, we provide an overview of scratchpad memory (SRAM)
and register tiling strategies.

Before the Tiled SpMM execution, we perform an inspec-
tion of the inspect the sparsity pattern of A, and determine
the spare memory access footprint on B for each thread
block. Then, we build the multi-stage tiling data structures
for loading only the required elements from B from DRAM
to the scratchpad memory (SRAM). Then, we perform a par-
tial SpMM from SRAM, that provides on-chip data reuse.
We will represent as p in the rest of the paper. For saving
memory bandwidth, we use two-byte indices for addressing
SRAM, which is represented as Bys. For reusing the sparse
matrix A from registers, we apply register tiling. In this case,
each thread computes R output, where the sparse matrix is
reuse R times. In the rest of this paper, we refer R as the
register-tiling factor.

In addition, we implement the S-ELL representation for
the sparse matrix [25]. The S-ELL data structure provides
fully-coalesced (ideal) data access to A with a zero-padding
overhead. To minimize the overhead we apply zero-padding
in warp granularity. We represent the S-ELL overhead with
Z in the rest of the paper.

Model-Driven Optimization of Tiled SpMM

3 The Tiled SpMM Model

To improve performance, Tiled SpMM provides data reuse
at on-chip registers and scratchpad memory (SMEM) such
that the DRAM traffic is reduced as explained in Section 2.5.

In this section, we present the Tiled SpMM model by up-
dating Eq. 2 with additional tiling-specific parameters p, R,
and By, and Z as

2
I, = .
(Br+Bis)Z BrI' By 6
—_— =+ —
R p pH Ry

®)

In this section, we go over the parameters in the Tiled SpMM
model with greater detail to clarify the model for the reader.
A brief explanation of these variables is given in Table 1.

3.0.1 Algorithmic Parameters. In this section, we sum-
marize the variables in the algorithmic intensity of Tiles
SpMM: R, p, Brs, and Z. These variables are a result of the
proposed register and scratchpad tiling algorithms. Please
find the summary below:

For more detail, we explain the model parameters in the
rest of this section. Note that I' in Table 1 is included only in
the effective intensity model—not in the algorithmic intensity
model.

o R: Register Tiling Factor. In register tiling, each thread com-

putes multiple outputs in the same row of C. That allows
reusing the nonzeroes of A for multiplication of many
columns. Therefore, the number of bytes to read sparse
matrix is reduced by a factor of R.
Register tiling requires a tuning to find a good compromise
between the algorithmic speedup and slowdown from reg-
ister pressure. We empirically found out that R = 16 pro-
vides good speedup. Allocating a large number of registers
causes register spill and cancels the algorithmic speedup
by the register tiling.

o p:SRAM Reuse Factor. Tiled SpMM employs shared-memory
tiling for reusing B from shared memory. p is the average
number of reuse from on-chip scratchpad. This variable
depends on the sparsity pattern of the matrix, and there-
fore cannot be known at compile time. This parameter is
calculated by counting the average number of nonzeroes
per column in every row panel.

o Bys: Bytes for indexing SRAM. Tiled SpMM saves DRAM
bandwidth by re-indexing the shared-memory data using
INT16 (can address up to 64KB scratchpad memory). In a
single-precision execution, this optimization provides 25%
additional bandwidth saving when reading sparse matrix
in single precision, i.e., reads Br + Bjs = 6 bytes rather
than By + By = 8 bytes, and hence provides speedup.

e Z: Zero-padding overhead. Tiled ELL data structure pro-
vides fully-coalesced (very desirable) memory access to
DRAM; however, depending on the matrix, it can cause
significant zero-padding overhead.

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

3.0.2 Modeling Sparse Data Access Cost. The effective

intensity includes the effect of the memory subsystem. Most

significantly, the caching effect is two-fold: 1) If data reuse
from L2 cache is large, it helps on speedup by the reuse factor

L. On the other hand, 2) if memory accesses are uncoalesced

(such as in the sparse memory access) per-access cost in-

creases by I'—the sparse data access cost. As a result, we can

find an average effect by modeling the overall sparse access
cost as

I'= T (4)
where C and L are the penalty and reward of the caching
mechanism during the sparse memory access. Here, 1 <

C,L, and if T' > 1, it means the cost of irregular access is

dominant and if otherwise, I' < 1, the benefit of cache reuse

is dominant.

To model C and L, we look at the sparsity pattern of the
memory accesses when we load B into shared memory. We
also take the architecture of the memory subsystem into
account, i.e., cache line size, sector cache, etc. The rules for
modeling C and L are given below.

o C: All miss (Worst Case) Cost Model. To simulate the most
costly scenario, we assume each memory access is a miss
and therefore it has to be brought with a cache line. In
the irregular access case, most of the data in the cacheline
will not be used by another thread in the same warp. In
the proposed model of C, we count the total number of
cache lines by an inspection of the sparsity pattern of A
as shown in Figure 4.

__ #of cache lines (touched) X cache line size (bytes)

warp size X Br

In a coalesced access, where each thread accesses a consec-
utive element, we set C = 1. In misaligned access, we set
C =1 because the unused portion will most probably be
used from L1 by another warp in the same thread block.

e L: Cold Miss (Optimistic) Cost Model. This model counts
only the cold accesses as in the infinite cache model. That
is, once the cost of irregular access cost is paid to read a
sparse data, it will stay in the cache forever. The speedup
relies on the L2 cache reuse that is shared among thread
blocks that overlaps at a given time in the dynamic sched-
uling. To find an optimistic value, we assume a full L2
reuse between the whole set of scheduled thread blocks.
We find L simply by dividing the total memory footprint
of all thread blocks by M, which gives us the average
potential L2 reuse. L depends on the sparsity pattern of
the matrix but not the architecture in this model.

4 Optimizations

Using the proposed model, we propose the following two per-
formance optimizations: (1) Load balancing with segmented
sum and (2) Row reordering with radix sort. We use the

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

Coalesced Access Misaligned Access

Anon.

Diverged Access

Warp Warp C=4

EEFEEXTT

Warp =1 Warp Warp C~1
{..000000 ooo}[ooooo.ooo.ooo
\\\\\\ T T T T S E| I R
VWV LTI
ITB‘TB‘TB‘TB‘TB‘TB‘TB‘TBI ITB‘TB‘TB‘TB‘TB‘TB‘TB‘TBITB‘TB‘TB‘TB‘TB‘TB‘TB‘TBI

el |\

Cache Line Cache Line 1

Cache Line 2

Figure 4. Various DRAM access patterns to model sparse memory access cost C: a) Coalesced access to A has no extra cost (C = 1) due to
S-ELL representation, b) misaligned access cost to C is approximated (C =~ 1) as no extra cost , and c) diverged access cost to B is found via

inspection of the sparsity pattern of A

memory-bandwidth bound for tuning the segmented sum
parameters in Fig. 6 and use the data reuse p in Eq. 3 in
the decision mechanism whether to keep the reordering (or
discarding it) as explained in the rest of this section.

4.1 Load Balancing: Segmented Sum

We apply segmented sum [8] to improve load balancing as
seen in Figure 5. Load balancing can occur because the Tiled
SpMM is either:

e Load Imbalanced: A few threads are assigned with much
more work than the average and therefore become the bot-
tleneck in the massively-parallel execution. Typically, the
sparse matrix is pathologically imbalanced. As a remedy,
we apply the proposed load-balancing (segmented sum)
algorithm that is explained in Section 4.1. In this case, we
set the segment size to p.

e Underutilized: When the sparse matrix is extremely fat
and short, i.e., M < N, the number of thread blocks does
not utilize the 108 streaming multiprocessors (SMs) on the
A100 GPUs. As a remedy, we use the segmented sum algo-
rithm for scheduling extra threads and hence increasing
the GPU utilization. In this case, we set the segment size
to Up, where

0 # scheduled blocks

)
SMs on GPU
is the GPU utilization.
Original CSR H Segmented CSR
g
Segment Segment Remainder g % Segment

g |00

5 0 6

< o 12

1 16

2 19

323
4% :4.44
40 Mean (p): 5.71 5 31 0:1.42
Standard Deviation (g): 4.72 6 36 o /u:0.32

Coefficient of Variation (o /u): 0.83 40
(a) (b)

Figure 5. Memory layouts of CSR and segmented CSR data struc-
tures. The load balancing reduces standard deviation and schedules
extra threads.

A decision flowchart is shown in Figure 6 is proposed
to employ segmented sum for balancing pathological cases.
(1) First, the matrix statistics are calculated. Those are the
utilization U, the mean p of the distribution of nonzeroes,
and the standard deviation o. of the nonzero distribution.
(2) Then if the case is underutilized, we apply segmented
sum with the segment size of U . (3) If not underutilized but
load imbalanced, we again apply segmented sum with the
segment size of y. (4) If neither of the pathological cases holds,
we skip load balancing and call the baseline TiledSpMM
without load balancing for avoiding the nominal overhead of
segmented sum. (5) Otherwise, we call the segmented sum
kernel.

Note that the segmented sum alters the arithmetic inten-
sity in Eq. 3 because of the following reasons: 1) The algo-
rithm changes the sparsity pattern and hence the statistics
(Figure 5) of the sparse matrix. Specifically, the segmented
sum affects y, Z, and p in an unpredictable way. 2) There is
a nominal overhead of the proposed load balancing mecha-
nism, and hence we update the effective intensity as

2

I = 6
¢ (BT +B15)Z BTC B[B[+6 BT ’ ()
—_—+t — + + + —

R p pH Ry

where p* is the number of nonzeroes per row after segment-
ing the long rows. We apply the modified effective intensity
in Eq. 6.

4.2 Row Reordering: Radix Sort

Radix sort provides a cheap way to group rows with similar
sparsity patterns into the same block. In radix sort, each
row is mapped to a binary number, according to its sparsity
pattern. In this case, zeroes (that are not stored) correspond
to 0 and nonzeroes correspond to 1 in the N-bit binary num-
ber [22]. The idea is to sort these numbers with quicksort
with O(M log M) comparisons, where M is the number of
rows.

Figure 7 shows an example. Each comparison of a pair
of rows requires O () element-wise comparisons, where y
is the number of nonzeroes per row on average. For each
comparison, the nonzeroes in the rows must be sorted (in ad-
vance) in terms of their column indices, which adds O (Mp log)

Model-Driven Optimization of Tiled SpMM

Calculate
U,u,o

Set Segment
Size: Uu

NNZ Imbalance

Set Segment
Size: 2u

Apply
Segmented
Sum

Figure 6. The proposed decision chart is used to pick the (1) load
imbalanced and (2) underutilized SpMM cases. By applying the
segmented sum kernel to those pathological cases, Tiled SpMM
improves performance as further discussed in Section 5.2.1.

time to the row reordering algorithm, yielding an order of
Mp(log M +log y1) (7)

time complexity. After sorting the rows, they are grouped
into bins in a consecutive manner and then each bin is as-
signed to a thread block with the same number of rows per
block.

Bits: 5 4 3 2 1 0 Bits: 5 4 3 2 1 0

Decimal: Decimal:
> 52 > 42
> %8 RadixSot > 48
> 61 -> 52
- I
> 42 = -> 58
> 60 -> 60
-> 48 -> 61

(b)

Figure 7. Radix sort treats each row as a binary number and sort
them with reduced computational complexity.

In general, the row reordering problem can be posed as
a clustering problem with a constraint on the cluster size.
Finding an optimal solution is NP-hard, and therefore it must
be solved sub-optimally with a heuristic algorithm, but with
a lower computational complexity. The radix sort provides
only a sub-optimal yet feasible solution to improve the data

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

reuse (p in Eq. 3). Nevertheless, since it is a greedy heuristic,
the improvement is not guaranteed, and in fact, it can reduce
p and hence increase the total execution time. Section 5.3
shows that 55 cases out of the 188 cases defined in Section 5.1
benefit from row reordering with radix sort.

5 Benchmarking Results

The main objectives of our evaluation are 1) proving that
the proposed model accurately predicts the kernel execution
performance; 2) verifying that the proposed model leads to
proper optimization decisions; 3) demonstrating that the opti-
mized kernel, Tiled SpMM outperforms the highly optimized
cuSPARSE library.

5.1 Experimental Setup

This section benchmarks the proposed performance model
over a collection of sparse matrices from a diverse set of
applications. All the experiments are performed on a single-
precision Tiled SpMM running on Nvidia A100 GPU [1].

We pick 200 largest sparse matrices in terms of number
of nonzeroes in the SuiteSparse Matrix Collection [10]. We
exclude 16 of them because they either do not fit in 40 GB of
HBM2 memory or they suffer from overflow. They require 64
bytes for indexing. As a result, we obtain an extensive bench-
mark dataset involving 188 sparse matrices from a diverse
set of applications. These are included in the SuiteSparse
website.? Our numerical results are reproducible because
our benchmark dataset is open-source and we use the latest-
generation of GPUs with vendor-provided HPC libraries
(cuSPARSE?®).

5.2 Effective Intensity Results

Figures 8 and 9 show the measured Tiled SpMM perfor-
mance sorted by 1) the algorithmic intensity bound (see
Section 3.0.1) and 2) the effective intensity bound (All Miss)
(see Section 3.0.2), respectively. The red curve shows the
tightest upper bound for measurement performance. That is,
a measurement reaches to the red curve only if it utilizes the
DRAM bandwidth 100%. If a measurement is higher than the
red line, it means that must be some data reuse from L2 cache.
The black line predicts the performance with the optimistic
scenario (see Section 3.0.2). That is, once the sparse access
cost is paid, the data stays in cache forever as if there is no
trashing, i.e., infinite cache.

Out of 188 cases, 17% utilize less than half of the peak
DRAM bandwidth. The picked cases with the decision al-
gorithm Figure 10 are highlighted with blue and orange as
explained in the figure caption. With the decision parame-
ters, a few performant cases are picked up because the load
variation is handled by the dynamic scheduling of thread
blocks on SMs.

Zhttps://suitesparse-collection-website.herokuapp.com/about
3https://docs.nvidia.com/cuda/cusparse/index.html

https://suitesparse-collection-website.herokuapp.com/about
https://docs.nvidia.com/cuda/cusparse/index.html

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada Anon.
Measurement ~ ——Algorithmic Bound (I8) FP32 Tiled SpMM (K = 16) on A100 Effective Bounds (I,) | ——All Miss ——Cold Miss |
10,000 —~
1,000 A A -
WYV
? 100
9
T 10
O]

1

Figure 8. Benchmark results over 188 matrices from SuiteSparse Matrix Collection - sorted by the algorithmic intensity bound.

Measurement[—All Miss —Cold Miss|Model m22 Cases

10,000

f=}
S
S

GFLOPS
5]
IS

@11 Cases

Figure 9. Load balancing algorithm selects 11 underutilized cases (U < 0.65, highlighted with orange) and 33 imbalanced cases (o/p > 1 -
highlighted with blue) and applies segmented sum for load balancing. This plot shows measured performance before load balancing and

sorted with respect to the effective intensity bound (All Miss).

ONoLB ©11Cases @22Cases

10,000

1,000
»
o
IS}
-
&
= 10022
] 4
Ny
o
=}
o
£
[=
10
«
o O
I ¥~26.7
4457 Y203
1
0.01 0.1 1 10

Arithmetic Intensity (FLOPs/Byte)

Figure 10. Roofline plot of 184 cases. 17% of these cases utilize less
than 50% of the DRAM bandwidth due to load balancing. We pick
them by the load balancing flowchart and apply load balancing
with segmented sum.

5.2.1 Effect of Load Balancing. Figure 10 shows the bench-

marking results in the roofline plot. The referecnces to the
bandwidth bounds are included in the figure. In this figure,
we model the arithmetic intensity with the worst case sce-
nario explained in Section 3.0.2. This means that the red
curve in Figure 9 is mapped to the DRAM bandwidth bound,

ONoLB ©11Cases ©@22Cases
10,000 -
Speedup e
Min: 1.03x e
Mean: 37.2x -7
Max: 237x -7
Geo-mean: 6.45x

1,000

Throughput (GFLOPS)

0.01 0.1 1 10
Arithmetic Intensity (FLOPs/Byte)

Figure 11. The proposed load balancing algorithm provides 14.8x
speedup on average to the underperforming cases determined by
the decision algorithm in Figure 6

and if a case performs higher, then it must have some L2
cache reuse (according to the model).

The selected cases using the decision flowchart in Fig-
ure 6 are shown with respective colors in the roofline plot
in Figure 1. The coefficient of variation (CV: ¢/u) and the
utilization (U) of the underperforming cases are annotated in
the figure with respective blue and orange colors. When we
apply the load balancing algorithm, those cases move closer

Model-Driven Optimization of Tiled SpMM

0,000 Skip LB ®Apply LB+ Before LB Crectof Load
10, _
e 43 i II--‘M‘
WX Il'III|I|l|l|||||III|I|l| I
g i A};.ﬁmll e I
g 10 I.m.,,,,,,,.||||||||—||
®] w1 |
T 10
O]

1

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

Balancing —All Miss —Cold Miss ——50% Line

Figure 12. The proposed load balancing provides 37.2x speedup on average to the cases highlighted with blue (nnz imbalanced) and orange
(GPU underutilization) cases. Results are sorted by the effective intensity (All Miss) bound.

Segmented Sum Kernel

Baseline Kernel | = Unbalanced == Underutilized | C—IcuSPARSE

GFLOPS

1000 Model

(il
Il

Speedup

0.1

1x Speedup
17 cases < cuSPARSE

il mHlni i Al 0Bl TN u\ummmmm w

mullll IR II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII L 1

10,000

o
SdO149

o

 —

83 cases: 2x faster The best case: 834x J

Figure 13. With the load balancing, Tiled SpMM is 12 times faster than cuSPARSE on average of all cases. 83 of the cases are 2x faster and

17 cases are slower than cuSPARSE.

Table 2. Speedup of Tiled SpMM over cuSPARSE

‘ Before LB After LB

Minimum 0.03x 0.14x

Average 1.78% 19.2x
Maximum 4.96X 834x%
Geo-Mean 0.75% 2.03%x

to the DRAM bandwidth bound as shown in Figure 11. The
speedup statistics are included in the figure. Figure 12 sorts
the balanced cases together. For reference, the throughputs
before the balancing are marked with cross signs.

5.2.2 Comparison with cuSPARSE. Finally, we bench-
mark the proposed Tiled SpMM algorithm against cuSPARSE
(release 11.4) with column-major layout. The cuSPARSE re-
sults are shown with empty bars and the optimized Tiled
SpMM results are shown with solid bars in Figure 13. The
speedup of Tiled SpMM over the whole benchmark dataset
(188 matrices) is summarized in Table 2. It is clearly seen
that the proposed load balancing algorithm explained in Sec-
tion 4.1 improves the average and geometric mean of the
speedup of Tiled SpMM over cuSPARSE.

5.3 Effect of Row Reordering

This subsection presents the effect of the proposed row-
reordering algorithm with radix sort in Section 4.2. It is
worth pointing out two implementation details. First, we

apply row reordering after the load balancing mechanism
described in Section 4.1. In this way, we can recover some
data reuse which is destroyed by the segmented sum algo-
rithm. Second, we neglect the permutation overhead when
writing the output. That is, when rows of the sparse matrix
are permuted, each thread writes the output to the permuted
location, i.e., not to the original location. Our experiments
show that obtaining the original ordering of the output ma-
trix undoes the benefit of the row reordering because of the
diverged memory access cost depicted in Figure 4. Therefore,
sticking to the permutation and preserving coalesced write
accesses is recommended if the application allows.

Figure 14 shows a few cases where row reordering pro-
vides significant speedup. The performance models (before
and after reordering) agree with the obtained speedup to
a good extent. Overall, 55 of the 188 cases in our bench-
mark dataset described in Section 5.1 show improvement.
As a result, we can assess that the proposed row reordering
algorithm provides improvement in 29% of the cases. The
improvement on the performance agrees with our model,
and we use the model on decision to whether keeping the
reordering or not.

6 Related Work

SpMM and SpMV are a fundamental algorithm used in many
scientific and engineering computations such as artificial in-
telligence, data analytics, and computational science. While

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

Row Reordering with Radix Sort

10,000

1,000

100

Compute Throughput (GFLOPS)

Reordered Model

Reordered - - -Load Balanced Model

Baseline Load Balanced

Figure 14. Row reordering with radix sort yields improvement
in 55 (29%) of the 188 application cases. This figure shows a few
examples.

SpMV has been extensively studied on GPUs [5-7, 13, 24, 26—
28, 30, 34, 36, 39, 41], there have been a few studies so far
that focus on SpMM [11, 17, 18, 32, 40], but they focus on
row-major layout of dense matrices.

Hong et al. [17, 18] proposed two approaches to improve
data locality and load balancing in SpMM. In the first work [17],
the sparse matrix is partitioned into two matrices; the first
matrix holds nonzeroes of heavily clustered row-segments
and the other holds randomly scattered row segments. Tiling
is used for the heavy-rows matrix to exploit data locality. In
the second work [18], an adaptive-tiling technique is pro-
posed to improve data locality for SpMM.

Jiang et al. [21] proposed a total row reordering proce-
dure to group similar rows together in the sparse matrix.
That is, rows with nonzeroes at similar column locations are
grouped in the same panel. Then, the adaptive tiling-tiling
technique [18] is used on the row-reordered matrix.

CSR-based formats are proposed to target specific appli-
cations without sparse matrix transformation. GE-SpMM
applies optimizations to the standard CSR format to enable
integration in graph neural networks (GNNs) frameworks
without format transformation overhead [20]. These opti-
mizations are loading sparse matrix rows into the shared
memory to enable data reuse and thread coarsening in which
a thread produces multiple partial results. Gale et al. [11]
proposed a hierarchical tiling SpMM approach to improve
data reuse for deep learning applications. Both CSR-based
approaches do not exploit the data reuse opportunity by
tiling the dense matrix B.

Performance modeling based on arithmetic intensity has
been studied on CPU processors [12]. Even though the pro-
posed model in previous work agrees with our baseline
model in Eq. 2, it does not include the caching effects as
we do in this chapter. An important related work [3] makes a
point of distinguishing two types of parallel efficiency: algo-
rithmic efficiency and implementation efficiency. This work
takes a similar approach and separates algorithmic intensity
(based on algorithm-only) from effective intensity (based on

10

Anon.

algorithm + architecture) through the sparse memory access
cost I' in Eq. 3.

Model-driven optimization approaches on GPUs have
been studied in the sparse matrix - dense vector multiplica-
tion (SpMV) context [9]. In this work, we propose the model
for the Tiled SpMM algorithm with the proposed register
and scratchpad tiling strategies. The specific strategy we
propose in this thesis is shown to be an optimal one through
a space exploration [38].

A similar tiling strategy has been implemented for 3D X-
ray image reconstruction top obtain up to 65 mixed-precision
PFLOPS sustained performance on Summit supercomputer.
The roofline model is documented in more detail in previous
work [37]. The segmented sum algorithm has been studied in
more detail for vector multiprocessors [8]. Kirk and Hwu [22]
provide a more detailed description of radix sort and its
implementation on GPUs. In this work, the preprocessing of
the sparse matrix is performed on CPU and the tiling data
structures are moved to GPU for accelerated execution.

7 Conclusion and Future Work

In conclusion, we develop an effective intensity model for
Tiled SpMM to understand and optimize SpMM on GPU ar-
chitecture. The variables in the proposed intensity model
reliably capture the performance implications depending on
the data (sparse sparsity pattern) and architecture (cache be-
havior). We benchmark the proposed model over 188 open-
source sparse matrices sampled from a wide spectrum of
applications. We use the estimated performance (with the
model) to detect underperforming cases of load imbalanced
and underutilized cases. We implement segmented sum as a
load balancing mechanism for Tiled SpMM to improve the
performance by 19.2X on average of the selected cases. As a
result of the improvement, we obtain 12X average speedup
and 2.03%x geometric speedup over the vendor provided HPC
library. Moreover, we open-source our reproducible applica-
tion code for the benefit of further analysis and improvement.
Future work includes extending the performance model
for the row-major storage of dense matrices. In that case,
implementation and optimizations of Tiled SpMM is quite
different than in this paper because the sparse memory access
patterns to B and hence the caching behaviour changes. We
can use the proposed existing model by updating the sparse
access cost I' in Eq. 3. We also propose to extend this work
with column reordering of the sparse matrix. Because, with
a permutation of rows and columns of the sparse matrix,
we can alter the sparsity pattern of A in our advantage. We
can use the proposed intensity model (given in Eq. 3) as a
guide for the performance implications and to predict the
effect of row and column permutation as follows: (1) row
permutation should improve the data reuse p and (2) column
permutation should reduce the sparse access cost I'.

Model-Driven Optimization of Tiled SpMM

References

[1] [n.d.]. Nvidia A100 GPUs power the modern data center.

[2

[3

[10

[11

[12

[13

(14

(15

[16

—

]

—

[t

—

—

—

—

]

[l

[t

—

https:
//www.nvidia.com/en-us/data-center/a100/

[n.d.]. NVIDIA cuSPARSE Library. http://docs.nvidia.com/cuda/
cusparse/index.html

W Kyle Anderson, William D Gropp, Dinesh K Kaushik, David E Keyes,
and Barry F Smith. 1999. Achieving high sustained performance in
an unstructured mesh CFD application. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing. 69-es.

Saurabh Animesh. 2018. Algorithm Architecture Co-Design for Dense
and Sparse Matrix Computations. Ph.D. Dissertation. Arizona State
University.

Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. 2014. Implement-
ing a Sparse Matrix Vector Product for the SELL-C/SELL-C-o formats
on NVIDIA GPUs. University of Tennessee, Tech. Rep. ut-eecs-14-727
(2014).

Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan
Parthasarath, and P Sadayappan. 2014. Fast sparse matrix-vector
multiplication on GPUs for graph applications. In SC’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 781-792.

Nathan Bell and Michael Garland. 2009. Implementing Sparse Matrix-
Vector Multiplication on Throughput-Oriented Processors. In Pro-
ceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis (Portland, Oregon) (SC ’09). Association
for Computing Machinery, New York, NY, USA, Article 18, 11 pages.
https://doi.org/10.1145/1654059.1654078

Guy E Blelloch, Michael A Heroux, and Marco Zagha. 1993. Segmented
operations for sparse matrix computation on vector multiprocessors. Tech-
nical Report. CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL
OF COMPUTER SCIENCE.

Jee W Choi, Amik Singh, and Richard W Vuduc. 2010. Model-driven
autotuning of sparse matrix-vector multiply on GPUs. ACM sigplan
notices 45, 5 (2010), 115-126.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse
GPU kernels for deep learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,
1-14.

William D Gropp, Dinesh K Kaushik, David E Keyes, and Barry F Smith.
1999. Toward realistic performance bounds for implicit CFD codes. In
Proceedings of parallel CFD, Vol. 99. Citeseer, 233-240.

Dahai Guo and William Gropp. 2012. Adaptive thread distributions
for SpMV on a GPU. In Proceedings of the extreme scaling workshop.
1-5.

Mert Hidayetoglu, Tekin Biger, Simon Garcia De Gonzalo, Bin Ren,
Vincend De Andrade, Doga Giirsoy, Rajkumar Kettimuthu, Ian T Foster,
and Wen-mei W Hwu. 2020. Petascale XCT: 3D image reconstruction
with hierarchical communications on multi-GPU nodes. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis.

Mert Hidayetoglu, Tekin Bicer, Simon Garcia De Gonzalo, Bin Ren,
Doga Giirsoy, Rajkumar Kettimuthu, Ian T Foster, and Wen-mei W
Hwu. 2019. Memxct: Memory-centric X-ray CT reconstruction with
massive parallelization. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
Mert Hidayetoglu, Carl Pearson, Vikram Sharma Mailthody, Eiman
Ebrahimi, Jinjun Xiong, Rakesh Nagi, and Wen-Mei Hwu. 2020. At-
Scale Sparse Deep Neural Network Inference With Efficient GPU Im-
plementation. In 2020 IEEE High Performance Extreme Computing Con-
ference (HPEC). https://doi.org/10.1109/hpec43674.2020.9286206

11

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay,
Jinsung Kim, Siireyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Umit V
Catalytrek, Srinivasan Parthasarathy, and P Sadayappan. 2018. Effi-
cient sparse-matrix multi-vector product on gpus. In Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. 66-79.

Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,
and P Sadayappan. 2019. Adaptive sparse tiling for sparse matrix
multiplication. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming. 300-314.

Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-
spmm: General-purpose sparse matrix-matrix multiplication on gpus
for graph neural networks. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1-12.
Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020.
GE-SpMM: General-Purpose Sparse Matrix-Matrix Multiplication on
GPUs for Graph Neural Networks. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Atlanta, Georgia) (SC’20). IEEE Press, Article 72, 12 pages.
Peng Jiang, Changwan Hong, and Gagan Agrawal. 2020. A novel data
transformation and execution strategy for accelerating sparse matrix
multiplication on GPUs. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 376~
388.

David B Kirk and Hwu Wen-Mei. 2016. Programming massively parallel
processors: A hands-on approach. Morgan Kaufmann.

Sireyya Emre Kurt, Vineeth Thumma, Changwan Hong, Aravind
Sukumaran-Rajam, and P Sadayappan. 2017. Characterization of data
movement requirements for sparse matrix computations on gpus. In
2017 IEEE 24th International Conference on High Performance Comput-
ing (HiPC). IEEE, 283-293.

Kenli Li, Wangdong Yang, and Keqin Li. 2014. Performance analysis
and optimization for SpMV on GPU using probabilistic modeling. IEEE
Transactions on Parallel and Distributed Systems 26, 1 (2014), 196-205.
Mohammed Mahmoud, Mark Hoffmann, and Hassan Reza. 2018. De-
veloping a new storage format and a warp-based SpMV kernel for
configuration interaction sparse matrices on the GPU. Computation 6,
3(2018), 45.

Duane Merrill and Michael Garland. 2016. Merge-based sparse matrix-
vector multiplication (spmv) using the csr storage format. ACM SIG-
PLAN Notices 51, 8 (2016), 1-2.

Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri, and Iyad Katib.
2019. SURAA: A novel method and tool for loadbalanced and coalesced
SpMV computations on GPUs. Applied Sciences 9, 5 (2019), 947.

B Neelima, G Ram Mohana Reddy, and Prakash S Raghavendra. 2014.
Predicting an optimal sparse matrix format for SpMV computation
on GPU. In 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops. IEEE, 1427-1436.

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.
2021. DNNFusion: accelerating deep neural networks execution with
advanced operator fusion. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation. 883-898.

Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and
Guangming Tan. 2021. TileSpMV: A Tiled Algorithm for Sparse Matrix-
Vector Multiplication on GPUs. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 68-78.

NVIDIA. 2008. CUDA Programming guide.

Gloria Ortega, Francisco Vazquez, Inmaculada Garcia, and Ester M
Garzon. 2014. Fastspmm: An efficient library for sparse matrix matrix
product on GPUs. Comput. §. 57, 7 (2014), 968-979.

Markus Steinberger, Andreas Derlery, Rhaleb Zayer, and Hans-Peter
Seidel. 2016. How naive is naive SpMV on the GPU?. In 2016 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1-8.

https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
http://docs.nvidia.com/cuda/cusparse/index.html
http://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/hpec43674.2020.9286206

PPoPP 2023, February 25-March 1, 2023, Montreal, Canada

(34]

(35]

(36

—

(37

—

(38]

Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. 2017. Glob-
ally homogeneous, locally adaptive sparse matrix-vector multiplica-
tion on the GPU. In Proceedings of the International Conference on
Supercomputing. 1-11.

Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang
Bao, and Ninghui Sun. 2011. Fast implementation of DGEMM on
Fermi GPU. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. 1-11.
Francisco Vazquez, G Ortega, José-Jests Fernandez, and Ester M
Garzoén. 2010. Improving the performance of the sparse matrix vec-
tor product with GPUs. In 2010 10th IEEE International Conference on
Computer and Information Technology. IEEE, 1146-1151.

Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: an insightful visual performance model for multicore ar-
chitectures. Commun. ACM 52, 4 (2009), 65-76.

Jie Xin, Xianqi Ye, Long Zheng, Qinggang Wang, Yu Huang, Pengcheng
Yao, Linchen Yu, Xiaofei Liao, and Hai Jin. 2021. Fast Sparse Deep
Neural Network Inference with Flexible SpMM Optimization Space
Exploration. In 2021 IEEE High Performance Extreme Computing Con-
ference (HPEC). IEEE, 1-7.

12

[39]

[40]

[41]

[42]

[43]

Anon.

Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014.
yaSpMV: Yet another SpMV framework on GPUs. Acm Sigplan Notices
49, 8 (2014), 107-118.

Carl Yang, Aydin Bulug, and John D Owens. 2018. Design principles
for sparse matrix multiplication on the GPU. In European Conference
on Parallel Processing. Springer, 672-687.

Wangdong Yang, Kenli Li, and Keqin Li. 2018. A parallel computing
method using blocked format with optimal partitioning for SpMV on
GPU. J. Comput. System Sci. 92 (2018), 152-170.

Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021.
Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix
multiplication. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems. 687-701.

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020.
Sparch: Efficient architecture for sparse matrix multiplication. In 2020
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 261-274.

	Abstract
	1 Introduction
	2 Background
	2.1 SpMM
	2.2 The Roofline Model: A Pedestrian Description
	2.3 The Naive SpMM Model
	2.4 Rules of the Game: The Abstract Machine Model
	2.5 Overview of the Tiled SpMM Baseline

	3 The Tiled SpMM Model
	4 Optimizations
	4.1 Load Balancing: Segmented Sum
	4.2 Row Reordering: Radix Sort

	5 Benchmarking Results
	5.1 Experimental Setup
	5.2 Effective Intensity Results
	5.3 Effect of Row Reordering

	6 Related Work
	7 Conclusion and Future Work
	References

